Sachio Morimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NRSF- <i>GNAO1</i> Pathway Contributes to the Regulation of Cardiac Ca ²⁺ Homeostasis. Circulation Research, 2022, 130, 234-248.	2.0	6
2	Troponin T amino acid mutation (ΔK210) knock-in mice as a neonatal dilated cardiomyopathy model. Pediatric Research, 2021, 89, 846-857.	1.1	1
3	Structural Proteins Troponin. , 2021, , 695-700.		2
4	Editorial: Recent Advances on Myocardium Physiology. Frontiers in Physiology, 2021, 12, 697852.	1.3	4
5	Cardiac AT 1 Receptor/βâ€Arrestin Pathway is a Neonatalâ€Specific Druggable Target for Pediatric Heart Failureβ. FASEB Journal, 2021, 35, .	0.2	0
6	Differential effects of the formin inhibitor SMIFH2 on contractility and Ca ²⁺ handling in frog and mouse cardiomyocytes. Genes To Cells, 2021, 26, 583-595.	0.5	2
7	Homogeneous 2D and 3D alignment of cardiomyocyte in dilated cardiomyopathy revealed by intravital heart imaging. Scientific Reports, 2021, 11, 14698.	1.6	3
8	HE4 Predicts Progressive Fibrosis and Cardiovascular Events in Patients With Dilated Cardiomyopathy. Journal of the American Heart Association, 2021, 10, e021069.	1.6	14
9	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	6.6	76
10	β-Arrestin–Biased AT1 Agonist TRV027 Causes a Neonatal-Specific Sustained Positive Inotropic Effect Without Increasing Heart Rate. JACC Basic To Translational Science, 2020, 5, 1057-1069.	1.9	12
11	Blockade of L-type Ca2+ channel attenuates doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB pathway. Scientific Reports, 2019, 9, 9850.	1.6	30
12	CaMKII-mediated phosphorylation of RyR2 plays a crucial role in aberrant Ca2+ release as an arrhythmogenic substrate in cardiac troponin T-related familial hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications, 2018, 496, 1250-1256.	1.0	24
13	Overexpression of heart-specific small subunit of myosin light chain phosphatase results in heart failure and conduction disturbance. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1192-H1202.	1.5	9
14	Cardiotonic actions of quercetin and its metabolite tamarixetin through a digitalis-like enhancement of Ca2+ transients. Archives of Biochemistry and Biophysics, 2018, 637, 40-47.	1.4	13
15	The Effects of Voluntary and Forced Exercises on DCM Model Mice. Juntendo Medical Journal, 2018, 64, 52-52.	0.1	0
16	Cardiac vagal control in a knock-in mouse model of dilated cardiomyopathy with a troponin mutation. Autonomic Neuroscience: Basic and Clinical, 2017, 205, 33-40.	1.4	2
17	Targeted Genome Replacement via Homology-directed Repair in Non-dividing Cardiomyocytes. Scientific Reports, 2017, 7, 9363.	1.6	35
18	Tissue thrombin is associated with the pathogenesis of dilated cardiomyopathy. International Journal of Cardiology, 2017, 228, 821-827.	0.8	12

#	Article	IF	CITATIONS
19	2,5-Dimethylcelecoxib prevents pressure-induced left ventricular remodeling through GSK-3 activation. Hypertension Research, 2017, 40, 130-139.	1.5	16
20	Connexin45 contributes to global cardiovascular development by establishing myocardial impulse propagation. Mechanisms of Development, 2016, 140, 41-52.	1.7	4
21	GSK-3β heterozygous knockout is cardioprotective in a knockin mouse model of familial dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1808-H1815.	1.5	8
22	Wnt∫β-Catenin Signaling Contributes to Skeletal Myopathy in Heart Failure via Direct Interaction With Forkhead Box O. Circulation: Heart Failure, 2015, 8, 799-808.	1.6	34
23	Stageâ€dependent benefits and risks of pimobendan in mice with genetic dilated cardiomyopathy and progressive heart failure. British Journal of Pharmacology, 2015, 172, 2369-2382.	2.7	14
24	Differentiation-inducing factor-3 inhibits intestinal tumor growth inÂvitro and inÂvivo. Journal of Pharmacological Sciences, 2015, 127, 446-455.	1.1	18
25	Effects of Candesartan on Electrical Remodeling in the Hearts of Inherited Dilated Cardiomyopathy Model Mice. PLoS ONE, 2014, 9, e101838.	1.1	13
26	Quercetin attenuates doxorubicin cardiotoxicity by modulating <scp>B</scp> mi†expression. British Journal of Pharmacology, 2014, 171, 4440-4454.	2.7	107
27	Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. Biochemical Pharmacology, 2014, 90, 397-405.	2.0	72
28	Survival benefit of ghrelin in the heart failure due to dilated cardiomyopathy. Pharmacology Research and Perspectives, 2014, 2, e00064.	1.1	17
29	In vivo effects of propyl gallate, a novel Ca2+ sensitizer, in a mouse model of dilated cardiomyopathy caused by cardiac troponin T mutation. Life Sciences, 2014, 109, 15-19.	2.0	7
30	DIF-1 inhibits tumor growth in vivo reducing phosphorylation of GSK-3β and expressions of cyclin D1 and TCF7L2 in cancer model mice. Biochemical Pharmacology, 2014, 89, 340-348.	2.0	30
31	Experimental models of inherited cardiomyopathy and its therapeutics. World Journal of Cardiology, 2014, 6, 1245.	0.5	9
32	Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β. Biochemical and Biophysical Research Communications, 2013, 440, 677-682.	1.0	34
33	Familial dilated cardiomyopathy mutations uncouple troponin I phosphorylation from changes in myofibrillar Ca2+ sensitivity. Cardiovascular Research, 2013, 99, 65-73.	1.8	68
34	Depressed Frank–Starling mechanism in the left ventricular muscle of the knock-in mouse model of dilated cardiomyopathy with troponin T deletion mutation ΔK210. Journal of Molecular and Cellular Cardiology, 2013, 63, 69-78.	0.9	38
35	Differentiation-Inducing Factor-1 Suppresses the Expression of c-Myc in the Human Cancer Cell Lines. Journal of Pharmacological Sciences, 2013, 121, 103-109.	1.1	16
36	Usefulness of Running Wheel for Detection of Congestive Heart Failure in Dilated Cardiomyopathy Mouse Model. PLoS ONE, 2013, 8, e55514.	1.1	13

#	Article	IF	CITATIONS
37	Inherited cardiomyopathies caused by troponin mutations. Journal of Geriatric Cardiology, 2013, 10, 91-101.	0.2	54
38	Cardiomyopathies: Classification, Clinical Characterization, and Functional Phenotypes. Biochemistry Research International, 2012, 2012, 1-2.	1.5	4
39	Endogenous Cardiac Troponin T Modulates Ca2+-Mediated Smooth Muscle Contraction. Scientific Reports, 2012, 2, 979.	1.6	28
40	Role of brain serotonin dysfunction in the pathophysiology of congestive heart failure. Journal of Molecular and Cellular Cardiology, 2012, 53, 760-767.	0.9	10
41	DIF-1 inhibits the Wnt/β-catenin signaling pathway by inhibiting TCF7L2 expression in colon cancer cell lines. Biochemical Pharmacology, 2012, 83, 47-56.	2.0	20
42	Multistep Ion Channel Remodeling and Lethal Arrhythmia Precede Heart Failure in a Mouse Model of Inherited Dilated Cardiomyopathy. PLoS ONE, 2012, 7, e35353.	1.1	20
43	ARRHYTHMOGENIC ACTIVITY IN LEFT VENTRICLES OF DILATED CARDIOMYOPATHY (DCM) MODEL MICE. Juntendol,, Igaku, 2012, 58, 44-48.	0.1	Ο
44	TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochemical and Biophysical Research Communications, 2011, 409, 108-113.	1.0	60
45	β1-Adrenergic Receptor Gene Polymorphisms and the Acute Response to Atenolol in Healthy Young Japanese Subjects. Journal of Pharmacological Sciences, 2011, 115, 490-499.	1.1	3
46	Celecoxib and 2,5-Dimethyl-Celecoxib Prevent Cardiac Remodeling Inhibiting Akt-Mediated Signal Transduction in an Inherited Dilated Cardiomyopathy Mouse Model. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 2-11.	1.3	25
47	Dictyostelium Differentiation-Inducing Factor-1 Binds to Mitochondrial Malate Dehydrogenase and Inhibits Its Activity. Journal of Pharmacological Sciences, 2010, 112, 320-326.	1.1	26
48	Biological actions of green tea catechins on cardiac troponin C. British Journal of Pharmacology, 2010, 161, 1034-1043.	2.7	67
49	Ca 2+ /Calmodulin-Dependent Kinase Ilî' Causes Heart Failure by Accumulation of p53 in Dilated Cardiomyopathy. Circulation, 2010, 122, 891-899.	1.6	81
50	Up-regulation of type 2 iodothyronine deiodinase in dilated cardiomyopathy. Cardiovascular Research, 2010, 87, 636-646.	1.8	37
51	Improvement of Left Ventricular Dysfunction and of Survival Prognosis of Dilated Cardiomyopathy by Administration of Calcium Sensitizer SCH00013 in a Mouse Model. Journal of the American College of Cardiology, 2010, 55, 1503-1505.	1.2	20
52	Anti-angiogenic effects of differentiation-inducing factor-1 involving VEGFR-2 expression inhibition independent of the Wnt/l²-catenin signaling pathway. Molecular Cancer, 2010, 9, 245.	7.9	20
53	Cardiomyopathy-causing deletion K210 in cardiac troponin T alters phosphorylation propensity of sarcomeric proteins. Journal of Molecular and Cellular Cardiology, 2010, 48, 934-942.	0.9	24
54	The involvement of aldosterone in cyclic stretch-mediated activation of NADPH oxidase in vascular smooth muscle cells. Hypertension Research, 2009, 32, 690-699.	1.5	23

#	Article	IF	CITATIONS
55	Therapeutic effect of β-adrenoceptor blockers using a mouse model of dilated cardiomyopathy with a troponin mutation. Cardiovascular Research, 2009, 84, 64-71.	1.8	26
56	Expanded Spectrum of Gene Causing Both Hypertrophic Cardiomyopathy and Dilated Cardiomyopathy. Circulation Research, 2009, 105, 313-315.	2.0	4
57	Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice. Biochemical and Biophysical Research Communications, 2009, 378, 851-856.	1.0	47
58	Role of protein kinase C in thin filament activation by rigor-like cross-bridges under ischemic conditions. Journal of Molecular and Cellular Cardiology, 2009, 47, 350-351.	0.9	0
59	Propyl Gallate, a Strong Antioxidant, Increases the Ca2+ Sensitivity of Cardiac Myofilament. Journal of Pharmacological Sciences, 2009, 109, 456-458.	1.1	8
60	Targeted disruption of the cardiac troponin T gene causes sarcomere disassembly and defects in heartbeat within the early mouse embryo. Developmental Biology, 2008, 322, 65-73.	0.9	65
61	Troponin: Regulatory function and disorders. Biochemical and Biophysical Research Communications, 2008, 369, 62-73.	1.0	45
62	Celecoxib-induced degradation of T-cell factors-1 and -4 in human colon cancer cells. Biochemical and Biophysical Research Communications, 2008, 377, 1185-1190.	1.0	22
63	Identification and physiological activity of survival factor released from cardiomyocytes during ischaemia and reperfusion. Cardiovascular Research, 2008, 79, 589-599.	1.8	14
64	Association of Serum Lipocalin-Type Prostaglandin D Synthase Levels with Subclinical Atherosclerosis in Untreated Asymptomatic Subjects. Hypertension Research, 2008, 31, 1931-1939.	1.5	25
65	Association between Arterial Stiffness and Cerebral White Matter Lesions in Community-Dwelling Elderly Subjects. Hypertension Research, 2008, 31, 75-81.	1.5	71
66	Sarcomeric proteins and inherited cardiomyopathies. Cardiovascular Research, 2007, 77, 659-666.	1.8	153
67	Aryl hydrocarbon receptor mediates laminar fluid shear stress-induced CYP1A1 activation and cell cycle arrest in vascular endothelial cells. Cardiovascular Research, 2007, 77, 809-818.	1.8	41
68	Knock-In Mouse Model of Dilated Cardiomyopathy Caused by Troponin Mutation. Circulation Research, 2007, 101, 185-194.	2.0	163
69	Celecoxib induces apoptosis by inhibiting the expression of survivin in HeLa cells. Biochemical and Biophysical Research Communications, 2007, 357, 1166-1171.	1.0	13
70	Molecular Pathogenic Mechanisms of Cardiomyopathies Caused by Mutations in Cardiac Troponin T. , 2007, 592, 227-239.		10
71	Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochemical Pharmacology, 2007, 73, 1318-1329.	2.0	76
72	Differentiation-Inducing Factor-1 Alters Canonical Wnt Signaling and Suppresses Alkaline Phosphatase Expression in Osteoblast-Like Cell Lines. Journal of Bone and Mineral Research, 2006, 21, 1307-1316.	3.1	39

#	Article	lF	CITATIONS
73	Involvement of CSK-3β and DYRK1B in Differentiation-inducing Factor-3-induced Phosphorylation of Cyclin D1 in HeLa Cells. Journal of Biological Chemistry, 2006, 281, 38489-38497.	1.6	54
74	SCH00013, a Novel Ca2+ Sensitizer With Positive Inotropic and No Chronotropic Action in Heart Failure. Journal of Pharmacological Sciences, 2005, 97, 53-60.	1.1	8
75	Activator Protein-1 Mediates Shear Stress–Induced Prostaglandin D Synthase Gene Expression in Vascular Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 970-975.	1.1	36
76	Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma. Experimental Cell Research, 2005, 310, 426-433.	1.2	38
77	Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells. Biochemical and Biophysical Research Communications, 2005, 338, 903-909.	1.0	30
78	Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Biochemical and Biophysical Research Communications, 2005, 338, 1519-1526.	1.0	72
79	Synthetic Peptides of Actin-Tropomyosin Binding Region of Troponin I and Heat Shock Protein 20 Modulate the Relaxation Process of Skinned Preparations of Taenia Caeci from Guinea Pig. The Japanese Journal of Physiology, 2005, 55, 373-378.	0.9	10
80	PKC412 induces apoptosis through a caspase-dependent mechanism in human keloid-derived fibroblasts. European Journal of Pharmacology, 2004, 497, 155-160.	1.7	7
81	Conduction abnormality in gap junction protein connexin45-deficient embryonic stem cell-derived cardiac myocytes. The Anatomical Record, 2004, 280A, 973-979.	2.3	26
82	Glycogen synthase kinase-3β is tyrosine-phosphorylated by MEK1 in human skin fibroblasts. Biochemical and Biophysical Research Communications, 2004, 316, 411-415.	1.0	52
83	Involvement of clusterin in 15-deoxy-Δ12,14-prostaglandin J2-induced vascular smooth muscle cell differentiation. Biochemical and Biophysical Research Communications, 2004, 319, 163-168.	1.0	14
84	Cardiac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T–tropomyosin interaction and causes a Ca2+ desensitization. Journal of Molecular and Cellular Cardiology, 2003, 35, 1421-1427.	0.9	92
85	Troponin I inhibitory peptide suppresses the force generation in smooth muscle by directly interfering with cross-bridge formation. Biochemical and Biophysical Research Communications, 2003, 307, 236-240.	1.0	13
86	Dictyostelium Differentiation-inducing Factor-3 Activates Glycogen Synthase Kinase-3Î ² and Degrades Cyclin D1 in Mammalian Cells. Journal of Biological Chemistry, 2003, 278, 9663-9670.	1.6	96
87	15-Deoxy-Δ12,14-prostaglandin J2 and laminar fluid shear stress stabilize c-IAP1 in vascular endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H38-H46.	1.5	22
88	Several Aspects of Calcium Regulator Mechanisms Linked to Troponin. Advances in Experimental Medicine and Biology, 2003, 538, 221-229.	0.8	3
89	Staurosporine-Induced Cleavage of α-Smooth Muscle Actin During Myofibroblast Apoptosis. Journal of Investigative Dermatology, 2002, 119, 1008-1013.	0.3	19
90	A pH-Sensitive Interaction of Troponin I with Troponin C Coupled with Strongly Binding Cross-Bridges in Cardiac Myofilament Activation. Biochemical and Biophysical Research Communications, 2001, 282, 811-815.	1.0	11

#	Article	IF	CITATIONS
91	Functional Consequences of the Mutations in Human Cardiac Troponin I Gene Found in Familial Hypertrophic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2001, 33, 2095-2107.	0.9	88
92	Effects of Troponin T Mutations in Familial Hypertrophic Cardiomyopathy on Regulatory Functions of Other Troponin Subunits. Journal of Biochemistry, 2001, 130, 127-131.	0.9	13
93	Functional Consequences of the Deletion Mutation ÂlClul6O in Human Cardiac Troponin T. Journal of Biochemistry, 2000, 127, 263-268.	0.9	38
94	Role of Troponin I Isoform Switching in Determining the pH Sensitivity of Ca2+ Regulation in Developing Rabbit Cardiac Muscle. Biochemical and Biophysical Research Communications, 2000, 267, 912-917.	1.0	26
95	Effect of Troponin I Phosphorylation by Protein Kinase A on Length-Dependence of Tension Activation in Skinned Cardiac Muscle Fibers. Biochemical and Biophysical Research Communications, 2000, 272, 104-110.	1.0	30
96	Functional changes in troponin T by a splice donor site mutation that causes hypertrophic cardiomyopathy. American Journal of Physiology - Cell Physiology, 1999, 277, C225-C232.	2.1	69
97	Roles of Troponin Isoforms in pH Dependence of Contraction in Rabbit Fast and Slow Skeletal and Cardiac Muscles. Journal of Biochemistry, 1999, 126, 121-129.	0.9	25
98	Ca2+ Sensitization and Potentiation of the Maximum Level of Myofibrillar ATPase Activity Caused by Mutations of Troponin T Found in Familial Hypertrophic Cardiomyopathy. Journal of Biological Chemistry, 1999, 274, 8806-8812.	1.6	108
99	Functional Consequences of a Carboxyl Terminal Missense Mutation Arg278Cys in Human Cardiac Troponin T. Biochemical and Biophysical Research Communications, 1999, 261, 79-82.	1.0	41
100	Ca ²⁺ -sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. American Journal of Physiology - Cell Physiology, 1998, 275, C200-C207.	2.1	111
101	A Novel Mechanism of JNK1 Activation. Journal of Biological Chemistry, 1997, 272, 16657-16662.	1.6	159
102	Ca2+ Binding to Cardiac Troponin C in the Myofilament Lattice and Its Relation to the Myofibrillar ATPase Activity. FEBS Journal, 1994, 226, 597-602.	0.2	16
103	The effect of Mg2+ on the Ca2+ binding to troponin C in rabbit fast skeletal myofibrils. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 336-340.	1.1	10
104	Effect of Myosin Cross-Bridge Interaction with Actin on the Ca2+-Binding Properties of Troponin C in Fast Skeletal Myofibrils1. Journal of Biochemistry, 1991, 109, 120-126.	0.9	20
105	Ca2+ Binding to Skeletal Muscle Troponin C in Skeletal and Cardiac Myofibrils1. Journal of Biochemistry, 1989, 105, 435-439.	0.9	8
106	Amino Acid Sequence of Porcine Cardiac Muscle Troponin C1. Journal of Biochemistry, 1989, 106, 55-59.	0.9	19
107	Effect of Substitution of Troponin C in Cardiac Myofibrils with Skeletal Troponin C or Calmodulinon the Ca2+ -and Sr2+-Sensitive ATPase Activity1. Journal of Biochemistry, 1988, 104, 149-154.	0.9	23
108	Ca2+- and Sr2+-Sensitivity of the ATPase Activity of Rabbit Skeletal Myofibrils: Effect of the Complete Substitution of Troponin C with Cardiac Troponin C, Calmodulin, and Parvalbumins1. Journal of Biochemistry, 1987, 101, 291-301.	0.9	69