
Fuping Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998350/publications.pdf Version: 2024-02-01

FUDINC PAN

#	Article	IF	CITATIONS
1	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	5.5	405
2	Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Applied Catalysis B: Environmental, 2018, 226, 463-472.	10.8	259
3	Catalyst-Free Synthesis of Crumpled Boron and Nitrogen Co-Doped Graphite Layers with Tunable Bond Structure for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 3313-3321.	7.3	258
4	Designing CO ₂ reduction electrode materials by morphology and interface engineering. Energy and Environmental Science, 2020, 13, 2275-2309.	15.6	251
5	Advanced Oxygen Reduction Electrocatalyst Based on Nitrogen-Doped Graphene Derived from Edible Sugar and Urea. ACS Applied Materials & Interfaces, 2013, 5, 11108-11114.	4.0	198
6	Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 272, 8-15.	4.0	198
7	Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition. Environmental Science & Technology, 2017, 51, 13372-13379.	4.6	162
8	Pore-Edge Tailoring of Single-Atom Iron–Nitrogen Sites on Graphene for Enhanced CO ₂ Reduction. ACS Catalysis, 2020, 10, 10803-10811.	5.5	140
9	Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. Applied Catalysis B: Environmental, 2019, 252, 240-249.	10.8	139
10	Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance. Langmuir, 2014, 30, 8238-8245.	1.6	131
11	Atomically Dispersed Iron–Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO ₂ Reduction. ACS Nano, 2020, 14, 5506-5516.	7.3	125
12	A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics, 2017, 3, 17-32.	2.8	119
13	Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Applied Catalysis B: Environmental, 2020, 260, 118189.	10.8	115
14	Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy, 2020, 68, 104384.	8.2	106
15	Efficient CO ₂ Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering. ACS Catalysis, 2019, 9, 2124-2133.	5.5	97
16	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26231-26237.	5.2	72
17	Atomic layer deposition enabled MgO surface coating on porous TiO2 for improved CO2 photoreduction. Applied Catalysis B: Environmental, 2018, 238, 274-283.	10.8	63
18	Self-growth-templating synthesis of 3D N,P,Co-doped mesoporous carbon frameworks for efficient bifunctional oxygen and carbon dioxide electroreduction. Journal of Materials Chemistry A, 2017, 5, 13104-13111.	5.2	62

Fuping Pan

#	Article	IF	CITATIONS
19	A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Advanced Composites and Hybrid Materials, 2018, 1, 6-31.	9.9	58
20	Porous FeCo Glassy Alloy as Bifunctional Support for Highâ€Performance Znâ€Air Battery. Advanced Energy Materials, 2021, 11, 2002204.	10.2	55
21	A Novel Photoâ€thermochemical Approach for Enhanced Carbon Dioxide Reforming of Methane. ChemCatChem, 2018, 10, 940-945.	1.8	54
22	Efficient Oxygen Reduction Electrocatalyst Based on Edge-Nitrogen-Rich Graphene Nanoplatelets: Toward a Large-Scale Synthesis. ACS Applied Materials & Interfaces, 2014, 6, 3930-3936.	4.0	51
23	A Facile Synthesis of Nitrogen/Sulfur Coâ€Doped Graphene for the Oxygen Reduction Reaction. ChemCatChem, 2016, 8, 163-170.	1.8	50
24	A novel N,Fe-Decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. Electrochimica Acta, 2018, 273, 154-161.	2.6	50
25	Carbon Catalysts for Electrochemical CO ₂ Reduction toward Multicarbon Products. Advanced Energy Materials, 2022, 12, .	10.2	50
26	Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy and Environmental Science, 2021, 14, 5035-5043.	15.6	39
27	Highâ€Performance Fe–Nâ€Doped Graphene Electrocatalysts with pHâ€Dependent Active Sites for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 2032-2040.	1.7	34
28	Highly efficient oxygen reduction on porous nitrogen-doped nanocarbons directly synthesized from cellulose nanocrystals and urea. Electrochimica Acta, 2015, 170, 234-241.	2.6	34
29	Facile Integration of Hierarchical Pores and N,P-Codoping in Carbon Networks Enables Efficient Oxygen Reduction Reaction. Electrochimica Acta, 2017, 238, 375-383.	2.6	34
30	One-Step Chemical Vapor Deposition Synthesis of Hierarchical Ni and N Co-Doped Carbon Nanosheet/Nanotube Hybrids for Efficient Electrochemical CO ₂ Reduction at Commercially Viable Current Densities. ACS Catalysis, 2021, 11, 10333-10344.	5.5	32
31	Efficient oil/water separation by a durable underwater superoleophobic mesh membrane with TiO2 coating via biomineralization. Separation and Purification Technology, 2019, 222, 35-44.	3.9	30
32	Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles. Catalysis Today, 2020, 339, 328-336.	2.2	28
33	Highly Efficient Nickel, Iron, and Nitrogen Codoped Carbon Catalysts Derived from Industrial Waste Petroleum Coke for Electrochemical CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 8840-8847.	3.2	26
34	Facile synthesis of nitrogen-doped carbon nanosheets as metal-free catalyst with excellent oxygen reduction performance in alkaline and acidic media. Journal of Solid State Electrochemistry, 2016, 20, 1469-1479.	1.2	25
35	Mesoporous TiO ₂ –BiOBr microspheres with tailorable adsorption capacities for photodegradation of organic water pollutants: probing adsorption–photocatalysis synergy by combining experiments and kinetic modeling. Environmental Science: Water Research and Technology, 2019. 5. 769-781.	1.2	22
36	An integrated electrocoagulation $\hat{a} \in \hat{e}$ Electrocatalysis water treatment process using stainless steel cathodes coated with ultrathin TiO2 nanofilms. Chemosphere, 2020, 254, 126776.	4.2	21

Fuping Pan

#	Article	IF	CITATIONS
37	Swelling-induced synthesis of nitrogen-doped graphene for oxygen reduction reaction. Electrochimica Acta, 2015, 180, 29-36.	2.6	17
38	Probing the Origin of Photocatalytic Effects in Photothermochemical Dry Reforming of Methane on a Pt/CeO ₂ Catalyst. Journal of Physical Chemistry C, 2021, 125, 18684-18692.	1.5	17
39	Transformation of Freon to 3D graphene frameworks for high-rate supercapacitors with high capacity retention. Journal of Power Sources, 2018, 405, 1-6.	4.0	15
40	Tuning of the microstructure, mechanical and tribological properties of a-C:H films by bias voltage of high frequency unipolar pulse. Applied Surface Science, 2015, 356, 695-700.	3.1	14
41	Facile synthesis of N-doped carbon nanosheet-encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline and acidic media. Ionics, 2016, 22, 2203-2212.	1.2	14
42	Nitrogen Coordinated Single Atomic Metals Supported on Nanocarbons: A New Frontier in Electrocatalytic CO2 Reduction. Engineered Science, 2018, , .	1.2	13
43	Salt-Induced Phase Separation to Synthesize Ordered Mesoporous Carbon by pH-Controlled Self-Assembly. Journal of Physical Chemistry C, 2017, 121, 1243-1248.	1.5	11
44	MgAl-layered double hydroxide flower arrays grown on carbon paper for efficient electrochemical sensing of nitrite. Journal of Electroanalytical Chemistry, 2019, 855, 113632.	1.9	11
45	Metalâ€Organic Framework MILâ€125 Derived Mg ²⁺ â€Doped Mesoporous TiO ₂ for Photocatalytic CO ₂ Reduction. ChemPhotoChem, 2021, 5, 79-89.	1.5	8
46	Response to Comment on "Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition― Environmental Science & Technology, 2018, 52, 1677-1678.	4.6	6
47	Efficient Photothermochemical Dry Reforming of Methane over Ni Supported on ZrO2 with CeO2 Incorporation. Catalysis Today, 2022, , .	2.2	5
48	Electrochemical conversion and storage systems: general discussion. Faraday Discussions, 2014, 176, 153-184.	1.6	1
49	Solar cells and photocatalytic systems: general discussion. Faraday Discussions, 2014, 176, 313-331.	1.6	1
50	Energy-related catalytic and other materials: general discussion. Faraday Discussions, 2014, 176, 429-445.	1.6	0