
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1997957/publications.pdf Version: 2024-02-01

DETD DEIMER

#	Article	IF	CITATIONS
1	Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 48-62.	4.7	317
2	Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 2006, 41, 285-295.	6.0	265
3	Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 2004, 64, 381-388.	5.2	206
4	Quinoa starch granules: a candidate for stabilising foodâ€grade Pickering emulsions. Journal of the Science of Food and Agriculture, 2012, 92, 1841-1847.	3.5	201
5	In situ visualization of the effect of a pulsed electric field on plant tissue. Journal of Food Engineering, 2002, 55, 223-230.	5.2	181
6	Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Science and Nutrition, 2013, 1, 157-171.	3.4	164
7	Starch particles for food based Pickering emulsions. Procedia Food Science, 2011, 1, 95-103.	0.6	151
8	Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization. Food Hydrocolloids, 2017, 63, 309-320.	10.7	147
9	Quinoa starch granules as stabilizing particles for production of Pickering emulsions. Faraday Discussions, 2012, 158, 139.	3.2	137
10	Preparation and encapsulation properties of double Pickering emulsions stabilized by quinoa starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 423, 147-153.	4.7	117
11	Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. International Dairy Journal, 2006, 16, 111-118.	3.0	111
12	Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. Journal of Food Engineering, 2008, 88, 144-148.	5.2	111
13	Thermal Denaturation of Whey Proteins in Mixtures with Caseins Studied by Differential Scanning Calorimetry. Journal of Dairy Science, 1990, 73, 590-600.	3.4	104
14	Fabrication of encapsulated oil powders from starch granule stabilized W/O/W Pickering emulsions by freeze-drying. Food Hydrocolloids, 2015, 51, 261-271.	10.7	92
15	Colour and image texture analysis in classification of commercial potato chips. Food Research International, 2007, 40, 1146-1154.	6.2	88
16	A Low Cost Video Technique for Colour Measurement of Potato Chips. LWT - Food Science and Technology, 1999, 32, 216-222.	5.2	87
17	Freezing and freeze-drying of Pickering emulsions stabilized by starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 512-520.	4.7	81
18	RELATION BETWEEN SENSORY TEXTURE PROPERTIES AND EXOPOLYSACCHARIDE DISTRIBUTION IN SET AND IN STIRRED YOGHURTS PRODUCED WITH DIFFERENT STARTER CULTURES. Journal of Texture Studies, 2005, 36, 174-189.	2.5	80

#	Article	IF	CITATIONS
19	Surface film pressure of β-lactoglobulin, α-lactalbumin and bovine serum albumin at the air/water interface studied by wilhelmy plate and drop volume. Journal of Colloid and Interface Science, 1992, 150, 394-403.	9.4	79
20	Using the Surface Evolver to model droplet formation processes in membrane emulsification. Journal of Colloid and Interface Science, 2004, 279, 175-185.	9.4	75
21	Rheological Properties of Heat-Induced β-Lactoglobulin Gels. Journal of Dairy Science, 1990, 73, 45-53.	3.4	72
22	Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment: mathematical modelling of mass transfer. Journal of Food Engineering, 2004, 64, 229-236.	5.2	72
23	Effect of osmotic pretreatment and pulsed electric field on the viscoelastic properties of potato tissue. Journal of Food Engineering, 2003, 59, 169-175.	5.2	71
24	Metabolomic evaluation of pulsed electric field-induced stress on potato tissue. Planta, 2009, 230, 469-479.	3.2	69
25	Changes in proteins, physical stability and structure in directly heated UHT milk during storage at different temperatures. International Dairy Journal, 2017, 71, 60-75.	3.0	64
26	Heat-induced aggregation of β-lactoglobulin studied by dynamic light scattering. International Dairy Journal, 1996, 6, 343-357.	3.0	62
27	Minimizing whey protein retention in cross-flow microfiltration of skim milk. International Dairy Journal, 1997, 7, 237-242.	3.0	55
28	Rheology of Buildup, Breakdown, and Rebodying of Acid Casein Gels. Journal of Dairy Science, 1993, 76, 3310-3316.	3.4	54
29	Interactions between EPS-producing Streptococcus thermophilus strains in mixed yoghurt cultures. Journal of Dairy Research, 2006, 73, 385-393.	1.4	52
30	A ⁴³ Ca and ³¹ P NMR study of the calcium and phosphate equilibria in heated milk solutions. Journal of Dairy Research, 1990, 57, 355-364.	1.4	50
31	Effect of pulsed electric field on the germination of barley seeds. LWT - Food Science and Technology, 2012, 47, 161-166.	5.2	47
32	Relationship between the Electrical and Rheological Properties of Potato Tuber Tissue after Various Forms of Processing. Bioscience, Biotechnology and Biochemistry, 2002, 66, 1218-1223.	1.3	44
33	Exploring Metabolic Responses of Potato Tissue Induced by Electric Pulses. Food Biophysics, 2008, 3, 352-360.	3.0	44
34	Development and breakdown of structure in yoghurt studied by oscillatory rheological measurements. Dairy Science and Technology, 1993, 73, 371-379.	0.9	43
35	Characterization of a cold-gelling whey protein concentrate. International Dairy Journal, 1997, 7, 601-608.	3.0	42
36	Time-Resolved Shear Viscosity of Wheat Flour Doughs—Effect of Mixing, Shear Rate, and Resting on the Viscosity of Doughs of Different Flours. Cereal Chemistry, 1997, 74, 49-55.	2.2	40

#	Article	IF	CITATIONS
37	The Syneresis of Rennet-coagulated Curd. Cheese: Chemistry, Physics and Microbiology, 2004, , 71-103.	0.2	40
38	Pulsed electric field reduces the permeability of potato cell wall. Bioelectromagnetics, 2008, 29, 296-301.	1.6	39
39	Influence of Pulsed Electric Field Protocols on the Reversible Permeabilization of Rucola Leaves. Food and Bioprocess Technology, 2014, 7, 761-773.	4.7	39
40	Fuzzy Traceability: A Process Simulation Derived Extension of the Traceability Concept in Continuous Food Processing. Food and Bioproducts Processing, 2007, 85, 354-359.	3.6	37
41	Dynamic Rheology of Rennet Curd. Journal of Dairy Science, 1987, 70, 1325-1330.	3.4	36
42	Reproducible Texture Analysis of Potato Chips. Journal of Food Science, 1999, 64, 309-312.	3.1	36
43	Plug flow of yoghurt in piping as determined by cross-correlated dual-plane electrical resistance tomography. Journal of Food Engineering, 2006, 76, 163-168.	5.2	36
44	Gas in Scattering Media Absorption Spectroscopy (GASMAS) Detected Persistent Vacuum in Apple Tissue After Vacuum Impregnation. Food Biophysics, 2012, 7, 28-34.	3.0	35
45	The Electrical Conductivity of Milk—The Effect of Dilution and Temperature. International Journal of Food Properties, 2005, 8, 15-22.	3.0	34
46	Effects of Pulsed Electric Field on the Viscoelastic Properties of Potato Tissue. Food Biophysics, 2009, 4, 229-239.	3.0	34
47	Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science and Emerging Technologies, 2013, 18, 169-176.	5.6	34
48	Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products. Food Chemistry, 2014, 158, 20-27.	8.2	34
49	CFD simulation and ERT visualization of the displacement of yoghurt by water on industrial scale. Journal of Food Engineering, 2007, 80, 166-175.	5.2	32
50	RELATIONSHIP BETWEEN INSTRUMENTAL AND SENSORY ANALYSIS OF TEXTURE AND COLOR OF POTATO CHIPS. Journal of Texture Studies, 1999, 30, 677-690.	2.5	31
51	Volume Measurement Method of Potato Chips. International Journal of Food Properties, 2004, 7, 37-44.	3.0	31
52	Effect of pulsed electric field pretreatment on solid–liquid expression from potato tissue. Journal of Food Engineering, 2005, 71, 164-169.	5.2	31
53	³¹ P-nuclear magnetic resonance study of milk fractions. Journal of Dairy Research, 1986, 53, 539-545.	1.4	30
54	Syneresis of submerged single curd grains and curd rheology. International Dairy Journal, 2000, 10, 489-496.	3.0	29

#	Article	IF	CITATIONS
55	Osmotic-treatment-induced cell death and osmotic processing kinetics of apples with characterised raw material properties. Journal of Food Engineering, 2004, 63, 47-56.	5.2	29
56	Edible proteins from coconut milk press cake; one step alkaline extraction and characterization by electrophoresis and mass spectrometry. Food Research International, 2012, 47, 146-151.	6.2	29
57	Dynamic object-oriented heat exchanger models for simulation of fluid property transitions. International Journal of Heat and Mass Transfer, 2006, 49, 2291-2303.	4.8	27
58	Electropermeabilization of apple tissue: Effect of cell size, cell size distribution and cell orientation. Biosystems Engineering, 2010, 105, 357-366.	4.3	27
59	Binding of Mg2+ and Ca2+ to β-casein A1: a multi-nuclear magnetic resonance study. Journal of Dairy Research, 1993, 60, 65-78.	1.4	25
60	Atomic force microscopy studies on whey proteins. International Dairy Journal, 1997, 7, 813-819.	3.0	25
61	Primary proteolysis studied in a cast cheese made from microfiltered milk. International Dairy Journal, 2006, 16, 623-632.	3.0	25
62	One-dimensional syneresis of rennet-induced gels. International Dairy Journal, 2000, 10, 829-834.	3.0	24
63	Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves. LWT - Food Science and Technology, 2015, 64, 497-502.	5.2	23
64	Modeling electroporation of the non-treated and vacuum impregnated heterogeneous tissue of spinach leaves. Innovative Food Science and Emerging Technologies, 2015, 29, 55-64.	5.6	23
65	Secondary structures in β-casein peptide 1–42: a two dimensional nuclear magnetic resonance study. Journal of Dairy Research, 1994, 61, 495-506.	1.4	22
66	Flux-based measures of adsorption to ultrafiltration membranes. Journal of Membrane Science, 1989, 40, 189-197.	8.2	21
67	Two-dimensional nuclear magnetic resonance study of the β-casein peptide 1–25: resonance assignments and secondary structure. BBA - Proteins and Proteomics, 1993, 1202, 121-128.	2.1	21
68	Determination of heat transfer coefficient during high pressure frying of potatoes. Journal of Food Engineering, 2010, 96, 528-532.	5.2	21
69	TURBULENCE PROMOTERS IN ULTRAFILTRATION OF WHEY PROTEIN CONCENTRATE. Journal of Food Science, 1974, 39, 1014-1017.	3.1	20
70	Liquid droplet-like behaviour of whole casein aggregates adsorbed on graphite studied by nanoindentation with AFM. Food Hydrocolloids, 2007, 21, 726-738.	10.7	20
71	Sugar Diffusivity in Agar Gel/Milk Bilayer Systems. Journal of Food Science, 1997, 62, 454-456.	3.1	19
72	Precision conductometry in milk renneting. Journal of Dairy Research, 1989, 56, 69-78.	1.4	18

#	Article	IF	CITATIONS
73	Behavior of the surviving population of Lactobacillus plantarum 564 upon the application of pulsed electric fields. Innovative Food Science and Emerging Technologies, 2013, 17, 93-98.	5.6	18
74	Native milk fat globule size and its influence on whipping properties. International Dairy Journal, 2016, 61, 176-181.	3.0	18
75	Soaking in a NaCl solution produce paler potato chips. LWT - Food Science and Technology, 2007, 40, 307-312.	5.2	17
76	In vitro intestinal lipolysis of emulsions based on starch granule Pickering stabilization. Food Hydrocolloids, 2019, 95, 468-475.	10.7	17
77	From Diets to Foods: Using Linear Programming to Formulate a Nutritious, Minimum-Cost Porridge Mix for Children Aged 1 to 2 Years. Food and Nutrition Bulletin, 2015, 36, 75-85.	1.4	16
78	Production of vegetable oil in milk emulsions using membrane emulsification. Desalination, 2009, 245, 631-638.	8.2	15
79	Studies on some raw material characteristics in different Swedish apple varieties. Journal of Food Engineering, 2004, 62, 121-129.	5.2	13
80	Sensor fusion as a tool to monitor dynamic dairy processes. Journal of Food Engineering, 2006, 76, 154-162.	5.2	11
81	A dynamic object-oriented model for efficient simulation of fluid dispersion in turbulent flow with varying fluid properties. Chemical Engineering Science, 2007, 62, 2168-2178.	3.8	11
82	Investigation of the metabolic consequences of impregnating spinach leaves with trehalose and applying a pulsed electric field. Bioelectrochemistry, 2016, 112, 153-157.	4.6	11
83	Fouling behaviour of silica on four different microfiltration membranes. Journal of Membrane Science, 1993, 76, 51-60.	8.2	10
84	EVALUATION OF THE TEXTURE OF FRIED POTATOES. Journal of Texture Studies, 2004, 35, 277-291.	2.5	10
85	Gloss measurements of raw agricultural products using image analysis. Food Research International, 2010, 43, 18-25.	6.2	10
86	A dynamic object-oriented model for efficient simulation of microbial reduction in dispersed turbulent flow. Journal of Food Engineering, 2008, 86, 358-369.	5.2	9
87	The influence of serum phase on the whipping time ofÂunhomogenised cream. International Dairy Journal, 2015, 49, 56-61.	3.0	9
88	PREDICTING RIPENING STAGES OF BANANAS (MUSA CAVENDISH) BY COMPUTER VISION. Acta Horticulturae, 2005, , 1363-1370.	0.2	8
89	Characterization of the agglomeration of roasted shredded cassava (<i>Manihot esculenta</i>) Tj ETQq1 1 0.784	1314 rgBT 2.1	Overlock 1
90	Fusion of skim milk cheese curd grains: Development of a method to measure the fracture stress of	3.0	7

the bonds between fused curd grains. International Dairy Journal, 2002, 12, 455-461.

3.07

#	Article	IF	CITATIONS
91	Predictability of the consistency of porridges using different methods to measure flour swelling. Starch/Staerke, 2014, 66, 199-207.	2.1	7
92	The Syneresis of Rennet-Coagulated Curd. , 2017, , 145-177.		5
93	APPLICATION OF IMAGE ANALYSIS TO MEASUREMENT OF DYNAMIC SURFACE TENSION USING OSCILLATING JET METHOD. Journal of Dispersion Science and Technology, 1993, 14, 661-673.	2.4	4
94	Formation of a Protein Aggregate Layer at a Milk/Acidified Gel Interface. International Dairy Journal, 1998, 8, 801-806.	3.0	4
95	Energy cost of high electric field pulse treatment. Trends in Food Science and Technology, 1994, 5, 265.	15.1	3
96	Effect of pH and soybean flour heat treatment on the texture and colour of fortified roasted shredded cassava roots (garri). Starch/Staerke, 2013, 65, 628-636.	2.1	3
97	Discussion session on food gels. Food Hydrocolloids, 2006, 20, 446-447.	10.7	2
98	Cyanogenic Potential of Roasted Cassava (Manihot esculenta Crantz) roots Rale from Inhambane Province, Mozambique. Czech Journal of Food Sciences, 2009, 27, S375-S378.	1.2	2
99	Nanorheological properties of casein. Special Publication - Royal Society of Chemistry, 0, , 218-229.	0.0	2
100	Heat Induced Gels from Coconut Press Cake Proteins. Food and Nutrition Sciences (Print), 2014, 05, 562-570.	0.4	2
101	Prediction of reverse osmosis apparatus performance. Chemical Engineering Science, 1972, 27, 1577-1581.	3.8	1
102	System options and costs in dairy ultrafiltration. Desalination, 1980, 35, 397-400.	8.2	1
103	Predicting flux in UF of milk. Desalination, 1985, 53, 135-142.	8.2	0
104	Rheology of Set Type and Stirred Type Yoghurt: Build-up, Break-down and Recovery; The Effects of pH, Temperature and Starter. , 1994, , 90-92.		0