Jeffrey Browning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1997126/publications.pdf

Version: 2024-02-01

84 papers 17,036 citations

52 h-index 71088 80 g-index

84 all docs 84 docs citations

times ranked

84

15912 citing authors

#	Article	IF	CITATIONS
1	Immunofibroblasts regulate $LT\hat{l}\pm3$ expression in tertiary lymphoid structures in a pathway dependent on ICOS/ICOSL interaction. Communications Biology, 2022, 5, 413.	2.0	8
2	Lung-resident memory B cells protect against bacterial pneumonia. Journal of Clinical Investigation, 2021, 131, .	3.9	62
3	Queen's Gambit: B Cell to Follicle. Journal of Immunology, 2021, 207, 753-754.	0.4	O
4	Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Annals of the Rheumatic Diseases, 2020, 79, 379-386.	0.5	97
5	Amelioration of Murine Autoimmune Pancreatitis by Targeted LTÎ ² R Inhibition and Anti-CD20 Treatment. ImmunoHorizons, 2020, 4, 688-700.	0.8	3
6	Extensive CD34-to-CD90 Fibroblast Transition Defines Regions of Cutaneous Reparative, Hypertrophic, and Keloidal Scarring. American Journal of Dermatopathology, 2019, 41, 16-28.	0.3	16
7	Perivascular Adventitial Fibroblast Specialization Accompanies T Cell Retention in the Inflamed Human Dermis. Journal of Immunology, 2019, 202, 56-68.	0.4	22
8	Clinical Efficacy and Safety of Baminercept, a Lymphotoxin \hat{l}^2 Receptor Fusion Protein, in Primary Sj \tilde{A} ¶gren's Syndrome. Arthritis and Rheumatology, 2018, 70, 1470-1480.	2.9	56
9	Dimethyl Fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Scientific Reports, 2017, 7, 41605.	1.6	61
10	Lymphotoxin \hat{l}^2 receptor signalling executesHelicobacter pylori-driven gastric inflammation in a T4SS-dependent manner. Gut, 2017, 66, 1369-1381.	6.1	33
11	Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. American Journal of Pathology, 2016, 186, 2650-2664.	1.9	48
12	The lymphotoxin \hat{l}^2 receptor is a potential therapeutic target in renal inflammation. Kidney International, 2016, 89, 113-126.	2.6	16
13	Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis. Journal of Clinical Investigation, 2016, 126, 4331-4345.	3.9	38
14	Pristane-Accelerated Autoimmune Disease in (SWR X NZB) F1 Mice Leads to Prominent Tubulointerstitial Inflammation and Human Lupus Nephritis-Like Fibrosis. PLoS ONE, 2016, 11, e0164423.	1.1	7
15	A Longitudinal Biomarker for the Extent of Skin Disease in Patients With Diffuse Cutaneous Systemic Sclerosis. Arthritis and Rheumatology, 2015, 67, 3004-3015.	2.9	95
16	Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nature Immunology, 2015, 16, 1235-1244.	7.0	278
17	Lymphotoxin-LIGHT Pathway Regulates the Interferon Signature in Rheumatoid Arthritis. PLoS ONE, 2014, 9, e112545.	1.1	40
18	Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Frontiers in Immunology, 2014, 5, 47.	2.2	73

#	Article	IF	CITATIONS
19	Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA. Science, 2014, 343, 1221-1228.	6.0	774
20	The Lymphotoxin Network: Orchestrating a Type I interferon response to optimize adaptive immunity. Cytokine and Growth Factor Reviews, 2014, 25, 139-145.	3.2	29
21	Lymphotoxin \hat{l}^2 receptor mediates caspase-dependent tumor cell apoptosis in vitro and tumor suppression in vivo despite induction of NF- \hat{l}^2 B activation. Carcinogenesis, 2013, 34, 1105-1114.	1.3	27
22	Donor B-cell alloantibody deposition and germinal center formation are required for the development of murine chronic GVHD and bronchiolitis obliterans. Blood, 2012, 119, 1570-1580.	0.6	221
23	Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors. Cell, 2012, 150, 194-206.	13.5	329
24	Lymphotoxin \hat{I}^2 Receptor Signaling Promotes Development of Autoimmune Pancreatitis. Gastroenterology, 2012, 143, 1361-1374.	0.6	45
25	Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nature Immunology, 2012, 13, 681-690.	7.0	187
26	Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy. Journal of Clinical Investigation, 2012, 122, 778-778.	3.9	1
27	Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of SjA¶gren's syndrome. Arthritis Research and Therapy, 2011, 13, R182.	1.6	71
28	Jürg Tschopp (1951–2011). Immunity, 2011, 34, 451-452.	6.6	0
29	LTBR-Pathway in Sjogren's Syndrome: CXCL13 Levels and B-cell-Enriched Ectopic Lymphoid Aggregates in NOD Mouse Lacrimal Glands Are Dependent on LTBR. Advances in Experimental Medicine and Biology, 2011, 691, 383-390.	0.8	11
30	Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy. Journal of Clinical Investigation, 2011, 121, 3991-4002.	3.9	208
31	Workshop Summary: Control of Lymphocyte Function and Repertoire by the TNF Superfamily. Advances in Experimental Medicine and Biology, 2011, 691, 351-352.	0.8	0
32	TRAF3 Controls Activation of the Canonical and Alternative NFÎB by the Lymphotoxin Beta Receptor. Journal of Biological Chemistry, 2010, 285, 12971-12978.	1.6	75
33	Anti-tumor activity of stability-engineered IgG-like bispecific antibodies targeting TRAIL-R2 and LTÎ 2 R. MAbs, 2009, 1, 128-141.	2.6	106
34	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 295-308.	7.7	345
35	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 447.	7.7	1
36	Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sj \tilde{A} ¶gren syndrome in salivary glands of non-obese diabetic mice. Arthritis Research and Therapy, 2009, 11, R24.	1.6	107

#	Article	IF	Citations
37	Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunological Reviews, 2008, 223, 202-220.	2.8	90
38	B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nature Reviews Drug Discovery, 2006, 5, 564-576.	21.5	239
39	Targeting the Lymphotoxin- \hat{l}^2 Receptor with Agonist Antibodies as a Potential Cancer Therapy. Cancer Research, 2006, 66, 9617-9624.	0.4	95
40	Lymphotoxin- \hat{l}^2 Receptor Signaling Is Required for the Homeostatic Control of HEV Differentiation and Function. Immunity, 2005, 23, 539-550.	6.6	233
41	TAJ/TROY, an Orphan TNF Receptor Family Member, Binds Nogo-66 Receptor 1 and Regulates Axonal Regeneration. Neuron, 2005, 45, 353-359.	3.8	363
42	Lymphotoxin/LIGHT, lymphoid microenvironments and autoimmune disease. Nature Reviews Immunology, 2003, 3, 642-655.	10.6	263
43	BAFFANDAPRIL: A Tutorial on B Cell Survival. Annual Review of Immunology, 2003, 21, 231-264.	9.5	874
44	A Role for the Lymphotoxin/LIGHT Axis in the Pathogenesis of Murine Collagen-Induced Arthritis. Journal of Immunology, 2003, 171, 115-126.	0.4	109
45	A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT. Journal of Clinical Investigation, 2003, 112, 755-767.	3.9	52
46	Visualization of Lymphotoxin- \hat{l}^2 and Lymphotoxin- \hat{l}^2 Receptor Expression in Mouse Embryos. Journal of Immunology, 2002, 168, 5079-5087.	0.4	80
47	BAFF: A fundamental survival factor for B cells. Nature Reviews Immunology, 2002, 2, 465-475.	10.6	619
48	Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. Journal of Clinical Investigation, 2002, 110, 1359-1369.	3.9	51
49	Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. Journal of Clinical Investigation, 2002, 110, 1359-1369.	3.9	23
50	Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associated epithelium and M cells in mouse Peyer's patches. Gastroenterology, 2001, 120, 1173-1182.	0.6	90
51	BAFF-R, a Newly Identified TNF Receptor That Specifically Interacts with BAFF. Science, 2001, 293, 2108-2111.	6.0	827
52	Elimination of Colonic Patches with Lymphotoxin \hat{l}^2 Receptor-lg Prevents Th2 Cell-Type Colitis. Journal of Immunology, 2001, 167, 2781-2790.	0.4	86
53	Essential Role of Lymph Nodes in Contact Hypersensitivity Revealed in Lymphotoxin-α–Deficient Mice. Journal of Experimental Medicine, 2001, 193, 1227-1238.	4.2	54
54	A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature, 2000, 406, 309-314.	13.7	1,103

#	Article	IF	Citations
55	Functional Effects of TNF and Lymphotoxin $\hat{l}\pm1\hat{l}^22$ on FDC-like Cells. Cellular Immunology, 2000, 203, 134-143.	1.4	45
56	Baff Mediates Survival of Peripheral Immature B Lymphocytes. Journal of Experimental Medicine, 2000, 192, 1453-1466.	4.2	625
57	A Soluble Form of B Cell Maturation Antigen, a Receptor for the Tumor Necrosis Factor Family Member April, Inhibits Tumor Cell Growth. Journal of Experimental Medicine, 2000, 192, 1677-1684.	4.2	239
58	Baff Binds to the Tumor Necrosis Factor Receptor–Like Molecule B Cell Maturation Antigen and Is Important for Maintaining the Peripheral B Cell Population. Journal of Experimental Medicine, 2000, 192, 129-136.	4.2	360
59	Lymphotoxin $\hat{l}\pm\hat{J}^2$ and Tumor Necrosis Factor Are Required for Stromal Cell Expression of Homing Chemokines in B and T Cell Areas of the Spleen. Journal of Experimental Medicine, 1999, 189, 403-412.	4.2	529
60	Mice Transgenic for Baff Develop Lymphocytic Disorders along with Autoimmune Manifestations. Journal of Experimental Medicine, 1999, 190, 1697-1710.	4.2	1,347
61	The Requirement of Membrane Lymphotoxin for the Presence of Dendritic Cells in Lymphoid Tissues. Journal of Experimental Medicine, 1999, 190, 629-638.	4.2	140
62	BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth. Journal of Experimental Medicine, 1999, 189, 1747-1756.	4.2	1,213
63	Reversal of virus-induced systemic shock and respiratory failure by blockade of the lymphotoxin pathway. Nature Medicine, 1999, 5, 1370-1374.	15.2	60
64	A role for lymphotoxin \hat{l}^2 receptor in host defense againstMycobacterium bovis BCG infection. European Journal of Immunology, 1999, 29, 4002-4010.	1.6	40
65	Turning off follicular dendritic cells. Nature, 1998, 395, 26-27.	13.7	186
66	Expression of the lymphotoxin \hat{l}^2 receptor on follicular stromal cells in human lymphoid tissues. Cell Death and Differentiation, 1998, 5, 497-505.	5.0	100
67	Lymph Node Genesis Is Induced by Signaling through the Lymphotoxin \hat{l}^2 Receptor. Immunity, 1998, 9, 71-79.	6.6	266
68	Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology, 1998, 115, 1464-1475.	0.6	145
69	The Sequential Role of Lymphotoxin and B Cells in the Development of Splenic Follicles. Journal of Experimental Medicine, 1998, 187, 997-1007.	4.2	221
70	TWEAK, a New Secreted Ligand in the Tumor Necrosis Factor Family That Weakly Induces Apoptosis. Journal of Biological Chemistry, 1997, 272, 32401-32410.	1.6	603
71	TRAMP, a Novel Apoptosis-Mediating Receptor with Sequence Homology to Tumor Necrosis Factor Receptor 1 and Fas(Apo-1/CD95). Immunity, 1997, 6, 79-88.	6.6	265
72	Distinct Roles in Lymphoid Organogenesis for Lymphotoxins α and β Revealed in Lymphotoxin β–Deficient Mice. Immunity, 1997, 6, 491-500.	6.6	564

#	Article	lF	CITATIONS
73	Lymphotoxin but not tumor necrosis factor functions to maintain splenic architecture and humoral responsiveness in adult mice. European Journal of Immunology, 1997, 27, 2033-2042.	1.6	180
74	Lymphotoxin \hat{l}^2 Receptor Triggering Induces Activation of the Nuclear Factor \hat{l}^2 B Transcription Factor in Some Cell Types. Journal of Biological Chemistry, 1996, 271, 24934-24938.	1.6	63
75	Preparation and Characterization of Soluble Recombinant Heterotrimeric Complexes of Human Lymphotoxins and. Journal of Biological Chemistry, 1996, 271, 8618-8626.	1.6	35
76	Monoclonal antibodies to lipocortin-1 as probes for biological function. FEBS Letters, 1990, 261, 247-252.	1.3	53
77	Interferons and rheumatoid arthritis: insight into interferon biology?. Trends in Immunology, 1987, 8, 372-374.	7.5	39
78	Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature, 1986, 320, 77-81.	13.7	684
79	Motions and interactions of phospholipid head groups at the membrane surface. 2. Head groups with hydroxyl groups. Biochemistry, 1981, 20, 7133-7143.	1.2	16
80	Motions and interactions of phospholipid head groups at the membrane surface. 1. Simple alkyl head groups. Biochemistry, 1981, 20, 7123-7133.	1.2	33
81	Motions and interactions of phospholipid head groups at the membrane surface. 3. Dynamic properties of amine-containing head groups. Biochemistry, 1981, 20, 7144-7151.	1.2	48
82	Bilayers of phosphatidylserine: a deuterium and phosphorus nuclear magnetic resonance study. Biochemistry, 1980, 19, 1262-1270.	1.2	161
83	Ca2+ influx across the excitable membrane of behavioural mutants of Paramecium. Nature, 1976, 259, 491-494.	13.7	35
84	Title is missing!., 0, 1, .		0