Sophie Roman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1997033/publications.pdf

Version: 2024-02-01

15 papers	751 citations	12 h-index	996975 15 g-index
16	16	16	800
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	La microfluidique infiltre les géosciences. Pourlascience Fr, 2022, N° 535 – mai, 50-58.	0.0	0
2	Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set. Computational Geosciences, 2021, 25, 1285-1318.	2.4	72
3	Digital Rock Physics: computation of hydrodynamic dispersion. Oil and Gas Science and Technology, 2021, 76, 51.	1.4	2
4	Computational Microfluidics for Geosciences. Frontiers in Water, 2021, 3, .	2.3	24
5	Pore-scale visualization and characterization of viscous dissipation in porous media. Journal of Colloid and Interface Science, 2020, 558, 269-279.	9.4	23
6	Microfluidic flow-through reactor and 3D Raman imaging for in situ assessment of mineral reactivity in porous and fractured porous media. Lab on A Chip, 2020, 20, 2562-2571.	6.0	29
7	Pore-scale modelling of multiphase reactive flow: application to mineral dissolution with production of. Journal of Fluid Mechanics, 2018, 855, 616-645.	3.4	75
8	Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media. Lab on A Chip, 2017, 17, 1462-1474.	6.0	58
9	Mineral dissolution and wormholing from a pore-scale perspective. Journal of Fluid Mechanics, 2017, 827, 457-483.	3.4	141
10	Measurements and simulation of liquid films during drainage displacements and snap-off in constricted capillary tubes. Journal of Colloid and Interface Science, 2017, 507, 279-289.	9.4	55
11	Going beyond 20 <i>\hat{l}_4</i> m-sized channels for studying red blood cell phase separation in microfluidic bifurcations. Biomicrofluidics, 2016, 10, 034103.	2.4	36
12	Fabrication of Microfluidic Devices for the study of Ion transport through Single-Walled Carbon Nanotubes. MRS Advances, 2016, 1, 2085-2090.	0.9	1
13	The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability. Transport in Porous Media, 2016, 113, 227-243.	2.6	139
14	Particle velocimetry analysis of immiscible two-phase flow in micromodels. Advances in Water Resources, 2016, 95, 199-211.	3.8	68
15	Velocimetry of red blood cells in microvessels by the dual-slit method: Effect of velocity gradients. Microvascular Research, 2012, 84, 249-261.	2.5	24