
Robert A Davey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1997004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Phenol-Substituted Diphyllin Derivatives as Selective Antagonists for Ebola Virus Entry. ACS Infectious Diseases, 2022, 8, 942-957.	1.8	6
2	Development of Monoclonal Antibodies to Detect for SARS-CoV-2 Proteins. Journal of Molecular Biology, 2022, 434, 167583.	2.0	4
3	Adipocytes are susceptible to Ebola Virus infection. Virology, 2022, 573, 12-22.	1.1	4
4	A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. IScience, 2021, 24, 102021.	1.9	66
5	Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death and Disease, 2021, 12, 310.	2.7	33
6	Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	245
7	Identification of filovirus entry inhibitors targeting the endosomal receptor NPC1 binding site. Antiviral Research, 2021, 189, 105059.	1.9	3
8	A Naturally Occurring Polymorphism in the Base of Sudan Virus Glycoprotein Decreases Glycoprotein Stability in a Species-Dependent Manner. Journal of Virology, 2021, 95, e0107321.	1.5	1
9	Nonâ€canonical prolineâ€tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO Journal, 2021, 40, e105658.	3.5	8
10	Synthesis and antiviral activity of fatty acyl conjugates of remdesivir against severe acute respiratory syndrome coronavirus 2 and Ebola virus. European Journal of Medicinal Chemistry, 2021, 226, 113862.	2.6	8
11	Automation of Infectious Focus Assay for Determination of Filovirus Titers and Direct Comparison to Plaque and TCID50 Assays. Microorganisms, 2021, 9, 156.	1.6	18
12	Pyronaridine tetraphosphate efficacy against Ebola virus infection in guinea pig. Antiviral Research, 2020, 181, 104863.	1.9	16
13	Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Molecular Cell, 2020, 80, 1104-1122.e9.	4.5	94
14	High-Throughput Screening Assay to Identify Small Molecule Inhibitors of Marburg Virus VP40 Protein. ACS Infectious Diseases, 2020, 6, 2783-2799.	1.8	5
15	Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 11085-11099.	2.9	11
16	High-Throughput, High-Resolution Interferometric Light Microscopy of Biological Nanoparticles. ACS Nano, 2020, 14, 2002-2013.	7.3	26
17	Egyptian Rousette IFN-ω Subtypes Elicit Distinct Antiviral Effects and Transcriptional Responses in Conspecific Cells. Frontiers in Immunology, 2020, 11, 435.	2.2	15
18	DABMA: A Derivative of ABMA with Improved Broad-Spectrum Inhibitory Activity of Toxins and Viruses. ACS Medicinal Chemistry Letters, 2019, 10, 1140-1147.	1.3	7

#	Article	IF	CITATIONS
19	Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads. ACS Omega, 2019, 4, 2353-2361.	1.6	49
20	The Natural Product Eugenol Is an Inhibitor of the Ebola Virus In Vitro. Pharmaceutical Research, 2019, 36, 104.	1.7	47
21	Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007890.	1.3	42
22	Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection. Antiviral Research, 2018, 149, 154-163.	1.9	31
23	Novel amodiaquine derivatives potently inhibit Ebola virus infection. Antiviral Research, 2018, 160, 175-182.	1.9	20
24	Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell, 2018, 175, 1917-1930.e13.	13.5	108
25	Identification of Diaryl-Quinoline Compounds as Entry Inhibitors of Ebola Virus. Viruses, 2018, 10, 678.	1.5	24
26	Phenotypic Prioritization of Diphyllin Derivatives That Block Filoviral Cell Entry by Vacuolar (H ⁺)â€ATPase Inhibition. ChemMedChem, 2018, 13, 2664-2676.	1.6	14
27	Autophagy-Associated Proteins Control Ebola Virus Internalization Into Host Cells. Journal of Infectious Diseases, 2018, 218, S346-S354.	1.9	17
28	Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S612-S626.	1.9	146
29	Identification of Ellagic Acid from Plant Rhodiola rosea L. as an Anti-Ebola Virus Entry Inhibitor. Viruses, 2018, 10, 152.	1.5	45
30	Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antiviral Research, 2018, 158, 288-302.	1.9	73
31	Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chemico-Biological Interactions, 2017, 267, 96-103.	1.7	25
32	ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments. Scientific Reports, 2017, 7, 15567.	1.6	13
33	Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State. Antimicrobial Agents and Chemotherapy, 2016, 60, 4552-4562.	1.4	46
34	Treatment of blood with a pathogen reduction technology using ultraviolet light and riboflavin inactivates <scp>E</scp> bola virus in vitro. Transfusion, 2016, 56, S6-15.	0.8	39
35	Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors. Antimicrobial Agents and Chemotherapy, 2016, 60, 4471-4481.	1.4	52
36	Facile Discovery of a Diverse Panel of Anti-Ebola Virus Antibodies by Immune Repertoire Mining. Scientific Reports, 2015, 5, 13926.	1.6	47

#	Article	IF	CITATIONS
37	Interferon-Î ³ Inhibits Ebola Virus Infection. PLoS Pathogens, 2015, 11, e1005263.	2.1	71
38	Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infectious Diseases, 2015, 1, 317-326.	1.8	209
39	Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science, 2015, 347, 995-998.	6.0	454
40	An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions. Cell Reports, 2015, 11, 376-389.	2.9	136
41	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 2015, 4, 1091.	0.8	56
42	ldentification of Factors Regulating MET Receptor Endocytosis by High-Throughput siRNA Screening. Methods in Molecular Biology, 2015, 1270, 381-394.	0.4	1
43	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 2015, 4, 1091.	0.8	80
44	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	0.9	59
45	pH-Dependent entry of chikungunya virus fusion into mosquito cells. Virology Journal, 2014, 11, 215.	1.4	15
46	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	1.5	49
47	Crimean-Congo Hemorrhagic Fever Virus Entry into Host Cells Occurs through the Multivesicular Body and Requires ESCRT Regulators. PLoS Pathogens, 2014, 10, e1004390.	2.1	49
48	Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2. PLoS Pathogens, 2014, 10, e1004213.	2.1	34
49	In Silico Derived Small Molecules Bind the Filovirus VP35 Protein and Inhibit Its Polymerase Cofactor Activity. Journal of Molecular Biology, 2014, 426, 2045-2058.	2.0	75
50	Postinhibitory rebound neurons and networks are disrupted in retrovirus-induced spongiform neurodegeneration. Journal of Neurophysiology, 2014, 112, 683-704.	0.9	7
51	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	0.9	54
52	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	0.9	99
53	AMP-Activated Protein Kinase Is Required for the Macropinocytic Internalization of Ebolavirus. Journal of Virology, 2013, 87, 746-755.	1.5	39
54	Infection ofAedes albopictuswith Chikungunya Virus Rectally Administered by Enema. Vector-Borne and Zoonotic Diseases, 2013, 13, 103-110.	0.6	11

#	Article	IF	CITATIONS
55	Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry. Journal of Virology, 2013, 87, 8327-8341.	1.5	219
56	A Systematic Screen of FDA-Approved Drugs for Inhibitors of Biological Threat Agents. PLoS ONE, 2013, 8, e60579.	1.1	223
57	Raf-1 Kinase Inhibitory Protein (RKIP) Mediates Ethanol-induced Sensitization of Secretagogue Signaling in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2012, 287, 33377-33388.	1.6	9
58	Ebolavirus Requires Acid Sphingomyelinase Activity and Plasma Membrane Sphingomyelin for Infection. Journal of Virology, 2012, 86, 7473-7483.	1.5	119
59	GRB2 Interaction with the Ecotropic Murine Leukemia Virus Receptor, mCAT-1, Controls Virus Entry and Is Stimulated by Virus Binding. Journal of Virology, 2012, 86, 1421-1432.	1.5	12
60	Progastrin overexpression imparts tumorigenic/metastatic potential to embryonic epithelial cells: Phenotypic differences between transformed and nontransformed stem cells. International Journal of Cancer, 2012, 131, E1088-99.	2.3	18
61	Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin. Archives of Virology, 2012, 157, 121-127.	0.9	43
62	The Tyro3 Receptor Kinase Axl Enhances Macropinocytosis of Zaire Ebolavirus. Journal of Virology, 2011, 85, 334-347.	1.5	138
63	Differential, Type I Interferon-Mediated Autophagic Trafficking of Hepatitis C Virus Proteins in Mouse Liver. Gastroenterology, 2011, 141, 674-685.e6.	0.6	33
64	Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism. PLoS ONE, 2011, 6, e24869.	1.1	21
65	T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for <i>Zaire Ebolavirus</i> and <i>Lake Victoria Marburgvirus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8426-8431.	3.3	330
66	The Cytoplasmic Domain of Marburg Virus GP Modulates Early Steps of Viral Infection. Journal of Virology, 2011, 85, 8188-8196.	1.5	16
67	CCK ₂ receptor expression transforms nonâ€ŧumorigenic human NCM356 colonic epithelial cells into tumor forming cells. International Journal of Cancer, 2010, 126, 864-875.	2.3	19
68	Critical Role for the Host GTPase-Activating Protein ARAP2 in InlB-Mediated Entry of <i>Listeria monocytogenes</i> . Infection and Immunity, 2010, 78, 4532-4541.	1.0	18
69	Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes. PLoS Pathogens, 2010, 6, e1001110.	2.1	362
70	Identification of novel cellular targets for therapeutic intervention against Ebola virus infection by siRNA screening. Drug Development Research, 2009, 70, 255-265.	1.4	33
71	Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virology Journal, 2009, 6, 73.	1.4	27
72	Pichindé virus is trafficked through a dynamin 2 endocytic pathway that is dependent on cellular Rab5- and Rab7-mediated endosomes. Archives of Virology, 2008, 153, 1391-1396.	0.9	12

#	Article	IF	CITATIONS
73	Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling. Virology, 2008, 377, 133-142.	1.1	3
74	Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells. Virology, 2008, 381, 230-240.	1.1	43
75	Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus. PLoS Pathogens, 2008, 4, e1000141.	2.1	168
76	Small Interfering RNA Profiling Reveals Key Role of Clathrin-Mediated Endocytosis and Early Endosome Formation for Infection by Respiratory Syncytial Virus. Journal of Virology, 2007, 81, 7786-7800.	1.5	91
77	Constitutively active CCK2 receptor splice variant increases Src-dependent HIF-1α expression and tumor growth. Oncogene, 2007, 26, 1013-1019.	2.6	32
78	Venezuelan equine encephalitis virus infection of mosquito cells requires acidification as well as mosquito homologs of the endocytic proteins Rab5 and Rab7. Virology, 2007, 369, 78-91.	1.1	38
79	Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology, 2007, 369, 1-11.	1.1	51
80	Use of recombinant lentivirus pseudotyped with vesicular stomatitis virus glycoprotein G for efficient generation of human anti-cancer chimeric T cells by transduction of human peripheral blood lymphocytes in vitro. Virology Journal, 2006, 3, 8.	1.4	13
81	Targeting and Penetration of Virus Receptor Bearing Cells by Nanoparticles Coated with Envelope Proteins of Moloney Murine Leukemia Virus. Nano Letters, 2006, 6, 2414-2421.	4.5	16
82	Determining functionally important amino acid residues of the E1 protein of Venezuelan equine encephalitis virus. Journal of Molecular Modeling, 2006, 12, 921-929.	0.8	21
83	Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cell membrane cholesterol depletion. Virology, 2006, 347, 333-342.	1.1	46
84	Novel, rapid assay for measuring entry of diverse enveloped viruses, including HIV and rabies. Journal of Virological Methods, 2006, 135, 143-150.	1.0	28
85	Respiratory Syncytial Virus F Envelope Protein Associates with Lipid Rafts without a Requirement for Other Virus Proteins. Journal of Virology, 2006, 80, 12160-12170.	1.5	32
86	PSEUDOTYPED VIRUSES PERMIT RAPID DETECTION OF NEUTRALIZING ANTIBODIES IN HUMAN AND EQUINE SERUM AGAINST VENEZUELAN EQUINE ENCEPHALITIS VIRUS. American Journal of Tropical Medicine and Hygiene, 2006, 75, 702-709.	0.6	12
87	Pseudotyped viruses permit rapid detection of neutralizing antibodies in human and equine serum against Venezuelan equine encephalitis virus. American Journal of Tropical Medicine and Hygiene, 2006, 75, 702-9.	0.6	8
88	Efficient Functional Pseudotyping of Oncoretroviral and Lentiviral Vectors by Venezuelan Equine Encephalitis Virus Envelope Proteins. Journal of Virology, 2005, 79, 756-763.	1.5	31
89	Src Regulates Constitutive Internalization and Rapid Resensitization of a Cholecystokinin 2 Receptor Splice Variant. Journal of Biological Chemistry, 2005, 280, 33368-33373.	1.6	17
90	Rapid and Sensitive Detection of Retrovirus Entry by Using a Novel Luciferase-Based Content-Mixing Assay. Journal of Virology, 2004, 78, 5124-5132.	1.5	27

#	Article	IF	CITATIONS
91	Modular organization of the Friend murine leukemia virus envelope protein underlies the mechanism of infection. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4113-4118.	3.3	72
92	Identification of a Receptor-Binding Pocket on the Envelope Protein of Friend Murine Leukemia Virus. Journal of Virology, 1999, 73, 3758-3763.	1.5	64
93	Structure of a Murine Leukemia Virus Receptor-Binding Glycoprotein at 2.0 Angstrom Resolution. Science, 1997, 277, 1662-1666.	6.0	213
94	Biochemical evidence that Patched is the Hedgehog receptor. Nature, 1996, 384, 176-179.	13.7	781
95	Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research, 0, 4, 1091.	0.8	14