
Margreth Keiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1996877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local impacts on road networks and access to critical locations during extreme floods. Scientific Reports, 2022, 12, 1552.	1.6	14
2	Physical vulnerability to dynamic flooding: Vulnerability curves and vulnerability indices. Journal of Hydrology, 2022, 607, 127501.	2.3	18
3	Joint Endeavor Toward Sustainable Mountain Development: Research at the Institute for Interdisciplinary Mountain Research of the Austrian Academy of Sciences. Mountain Research and Development, 2022, 42, .	0.4	0
4	Critical research in the water-related multi-hazard field. Nature Sustainability, 2022, 5, 90-91.	11.5	3
5	Modelling the long-term geomorphic response to check dam failures in an alpine channel with CAESAR-Lisflood. International Journal of Sediment Research, 2022, 37, 687-700.	1.8	11
6	Expert-based versus data-driven flood damage models: A comparative evaluation for data-scarce regions. International Journal of Disaster Risk Reduction, 2021, 57, 102148.	1.8	25
7	A method to reconstruct flood scenarios using field interviews and hydrodynamic modelling: application to the 2017 Suleja and Tafa, Nigeria flood. Natural Hazards, 2021, 108, 1781-1805.	1.6	3
8	Evaluating targeted heuristics for vulnerability assessment in flood impact model chains. Journal of Flood Risk Management, 2021, 14, e12736.	1.6	5
9	Vulnerability patterns of road network to extreme floods based on accessibility measures. Transportation Research, Part D: Transport and Environment, 2021, 100, 103045.	3.2	23
10	Modeling the geomorphic response to early river engineering works using CAESAR-Lisflood. Anthropocene, 2020, 32, 100266.	1.6	13
11	Flood exposure analysis of road infrastructure – Comparison of different methods at national level. International Journal of Disaster Risk Reduction, 2020, 47, 101548.	1.8	31
12	A coupled human and landscape conceptual model of risk and resilience in Swiss Alpine communities. Science of the Total Environment, 2020, 730, 138322.	3.9	21
13	A generic physical vulnerability model for floods: review and concept for data-scarce regions. Natural Hazards and Earth System Sciences, 2020, 20, 2067-2090.	1.5	24
14	Snow avalanches. , 2019, , 369-389.		2
15	Modeling the impact of dam removal on channel evolution and sediment delivery in a multiple dam setting. International Journal of Sediment Research, 2019, 34, 537-549.	1.8	22
16	An integrated community and ecosystem-based approach to disaster risk reduction in mountain systems. Environmental Science and Policy, 2019, 94, 143-152.	2.4	76
17	Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward. Journal of Hydrology, 2019, 575, 587-595.	2.3	63
18	Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events. Journal of Environmental Management, 2019, 246, 85-100.	3.8	7

MARGRETH KEILER

#	Article	IF	CITATIONS
19	Catalyzing Transformations to Sustainability in the World's Mountains. Earth's Future, 2019, 7, 547-557.	2.4	65
20	Short communication: A model to predict flood loss in mountain areas. Environmental Modelling and Software, 2019, 117, 176-180.	1.9	31
21	A Robust and Transferable Model for the Prediction of Flood Losses on Household Contents. Water (Switzerland), 2018, 10, 1596.	1.2	4
22	A comparison of building value models for flood risk analysis. Natural Hazards and Earth System Sciences, 2018, 18, 2431-2453.	1.5	21
23	Flood risk (d)evolution: Disentangling key drivers of flood risk change with a retro-model experiment. Science of the Total Environment, 2018, 639, 195-207.	3.9	46
24	Application of Sensitivity Analysis for Process Model Calibration of Natural Hazards. Geosciences (Switzerland), 2018, 8, 218.	1.0	7
25	Allocation of risk and benefits—distributional justices in mountain hazard management. Regional Environmental Change, 2018, 18, 353-365.	1.4	35
26	Identifying spatial clusters of flood exposure to support decision making in risk management. Science of the Total Environment, 2017, 598, 593-603.	3.9	67
27	Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Annals of the American Association of Geographers, 2017, 107, 382-392.	1.5	82
28	Editorial to the special issue on resilience and vulnerability assessments in natural hazard and risk analysis. Natural Hazards and Earth System Sciences, 2017, 17, 1203-1206.	1.5	5
29	Vulnerability and Exposure to Geomorphic Hazards: Some Insights from the European Alps. Advances in Geographical and Environmental Sciences, 2016, , 165-180.	0.4	7
30	Spatiotemporal aspects of flood exposure in Switzerland. E3S Web of Conferences, 2016, 7, 08008.	0.2	9
31	A spatiotemporal multi-hazard exposure assessment based on property data. Natural Hazards and Earth System Sciences, 2015, 15, 2127-2142.	1.5	124
32	Complexity and nonâ€linearity in earth surface processes – concepts, methods and applications. Earth Surface Processes and Landforms, 2015, 40, 1270-1274.	1.2	15
33	International Frameworks for Disaster Risk Reduction: Useful Guidance for Sustainable Mountain Development?. Mountain Research and Development, 2015, 35, 195-202.	0.4	54
34	Loss estimation for landslides in mountain areas – An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling and Software, 2015, 63, 156-169.	1.9	97
35	Methods for detecting channel bed surface changes in a mountain torrent – experiences from the Dorfbach torrent. Geographica Helvetica, 2015, 70, 265-279.	0.4	9
36	Vulnerability to Heat Waves, Floods, and Landslides in Mountainous Terrain. , 2014, , 179-201.		6

Vulnerability to Heat Waves, Floods, and Landslides in Mountainous Terrain. , 2014, , 179-201. 36

MARGRETH KEILER

#	Article	IF	CITATIONS
37	A physical approach on flood risk vulnerability of buildings. Hydrology and Earth System Sciences, 2014, 18, 3817-3836.	1.9	85
38	Theoretical and Conceptual Framework for the Assessment of Vulnerability to Natural Hazards and Climate Change in Europe11This chapter is based on a paper published in Natural Hazards dealing with the MOVE framework; see in detail Birkmann et al., 2013 , 2014, , 1-19.		8
39	Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards, 2013, 68, 1217-1241.	1.6	91
40	Framing vulnerability, risk and societal responses: the MOVE framework. Natural Hazards, 2013, 67, 193-211.	1.6	678
41	Worldwide Trends in Natural Disasters. Encyclopedia of Earth Sciences Series, 2013, , 1111-1114.	0.1	10
42	The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a mediumâ€sized agricultural catchment, austria. Geografiska Annaler, Series A: Physical Geography, 2012, 94, 511-529.	0.6	34
43	Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol. Natural Hazards, 2012, 64, 2083-2105.	1.6	125
44	Challenges of analyzing multi-hazard risk: a review. Natural Hazards, 2012, 64, 1925-1958.	1.6	478
45	Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 2012, 32, 577-590.	1.7	223
46	The MultiRISK platform: The technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology, 2012, 151-152, 139-155.	1.1	48
47	Towards dynamics in flood risk assessment. Natural Hazards and Earth System Sciences, 2012, 12, 3571-3587.	1.5	37
48	Preface: concepts and implications of environmental change and human impact: studies from austrian geomorphological research. Geografiska Annaler, Series A: Physical Geography, 2012, 94, 1-5.	0.6	7
49	Magnitude and frequency: challenges for the assessment of vulnerability to geomorphic hazards. , 2012, , .		0
50	Geomorphologie und Komplexitä- untrennbar verbunden?. Zeitschrift Für Geomorphologie, 2011, 55, 233-257.	0.3	13
51	On the Connection between Debris Flow Activity and Permafrost Degradation: A Case Study from the Schnalstal, South Tyrolean Alps, Italy. Permafrost and Periglacial Processes, 2011, 22, 254-265.	1.5	42
52	Physical vulnerability assessment for alpine hazards: state of the art and future needs. Natural Hazards, 2011, 58, 645-680.	1.6	207
53	Climate change and geomorphological hazards in the eastern European Alps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2461-2479.	1.6	155
54	Variability of Natural Hazard Risk in the European Alps. Public Administration and Public Policy, 2008, ,	0.0	12

MARGRETH KEILER

#	Article	IF	CITATIONS
55	Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria. Natural Hazards and Earth System Sciences, 2006, 6, 637-651.	1.5	74
56	Temporal variability of damage potential in settlements – A contribution towards the long-term development of avalanche risk. , 2006, , 237-247.		2
57	Natural hazard risk depending on the variability of damage potential. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	2
58	The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Natural Hazards and Earth System Sciences, 2005, 5, 893-901.	1.5	55
59	Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Natural Hazards and Earth System Sciences, 2005, 5, 235-242.	1.5	40
60	Avalanche related damage potential - changes of persons and mobile values since the mid-twentieth century, case study GaltA1/4r. Natural Hazards and Earth System Sciences, 2005, 5, 49-58.	1.5	58
61	Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads. Natural Hazards and Earth System Sciences, 2005, 5, 821-832.	1.5	47
62	Development of the damage potential resulting from avalanche risk in the period 1950-2000, case study Galtür. Natural Hazards and Earth System Sciences, 2004, 4, 249-256.	1.5	52
63	Review and future challenges in snow avalanche risk analysis. , 0, , 49-62.		17
64	Snow and avalanches. , 0, , 50-70.		3

Snow and avalanches. , 0, , 50-70. 64