Santosh Chauhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1996615/publications.pdf

Version: 2024-02-01

41 papers 7,578 citations

279487 23 h-index 39 g-index

42 all docs 42 docs citations

times ranked

42

17465 citing authors

#	Article	IF	CITATIONS
1	Selectivity and trafficking of autophagic cargoes. , 2022, , 39-56.		1
2	SMARCD1 negatively regulates myeloid differentiation of leukemic cells via epigenetic mechanisms. Blood Advances, 2022, 6, 3106-3113.	2.5	3
3	Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. Journal of Molecular Neuroscience, 2022, , 1.	1.1	6
4	RNA-Binding RING E3-Ligase DZIP3/hRUL138 Stabilizes Cyclin D1 to Drive Cell-Cycle and Cancer Progression. Cancer Research, 2021, 81, 315-331.	0.4	14
5	IRGM links autoimmunity to autophagy. Autophagy, 2021, 17, 578-580.	4.3	18
6	Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Archives of Microbiology, 2021, 203, 2895-2910.	1.0	8
7	Inhibition of IRGM establishes a robust antiviral immune state to restrict pathogenic viruses. EMBO Reports, 2021, 22, e52948.	2.0	17
8	Innate immunity and Inflammophagy: Balancing the Defence and Immune Homeostasis. FEBS Journal, 2021, , .	2.2	9
9	Autoimmunity gene <scp>lRGM</scp> suppresses <scp>cGAS</scp> ― <scp>STING</scp> and <scp>RIG</scp> â€ŧ― <scp>MAVS</scp> signaling to control interferon response. EMBO Reports, 2020, 21, e50051.	2.0	48
10	Transcriptomic Analysis Identifies RNA Binding Proteins as Putative Regulators of Myelopoiesis and Leukemia. Frontiers in Oncology, 2019, 9, 692.	1.3	18
11	IRGM restrains NLRP3 inflammasome activation by mediating its SQSTM1/p62-dependent selective autophagy. Autophagy, 2019, 15, 1645-1647.	4.3	32
12	TRIM16 governs the biogenesis and disposal of stress-induced protein aggregates to evade cytotoxicity: implication for neurodegeneration and cancer. Autophagy, 2019, 15, 924-926.	4.3	24
13	The Crohn's Disease Risk Factor IRGM Limits NLRP3 Inflammasome Activation by Impeding Its Assembly and by Mediating Its Selective Autophagy. Molecular Cell, 2019, 73, 429-445.e7.	4.5	145
14	TRIM16 controls turnover of protein aggregates by modulating NRF2, ubiquitin system, and autophagy: implication for tumorigenesis. Molecular and Cellular Oncology, 2018, 5, e1532251.	0.3	7
15	TRIM16 controls assembly and degradation of protein aggregates by modulating the p62â€NRF2 axis and autophagy. EMBO Journal, 2018, 37, .	3.5	84
16	TRIM16 employs NRF2, ubiquitin system and aggrephagy for safe disposal of stress-induced misfolded proteins. Cell Stress, 2018, 2, 365-367.	1.4	6
17	Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy, 2017, 13, 1086-1087.	4.3	40
18	TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Developmental Cell, 2016, 39, 13-27.	3.1	339

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
20	Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy. Autophagy, 2016, 12, 429-431.	4.3	36
21	Secretory autophagy. Current Opinion in Cell Biology, 2015, 35, 106-116.	2.6	378
22	Immunologic manifestations of autophagy. Journal of Clinical Investigation, 2015, 125, 75-84.	3.9	135
23	IRGM Governs the Core Autophagy Machinery to Conduct Antimicrobial Defense. Molecular Cell, 2015, 58, 507-521.	4.5	191
24	Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nature Communications, 2015, 6, 8620.	5.8	130
25	TRIM Proteins Regulate Autophagy and Can Target Autophagic Substrates by Direct Recognition. Developmental Cell, 2014, 30, 394-409.	3.1	269
26	Neutral Lipid Stores and Lipase PNPLA5 Contribute to Autophagosome Biogenesis. Current Biology, 2014, 24, 609-620.	1.8	213
27	ZKSCAN3 Is a Master Transcriptional Repressor of Autophagy. Molecular Cell, 2013, 50, 16-28.	4.5	224
28	Autophagy as an immune effector against tuberculosis. Current Opinion in Microbiology, 2013, 16, 355-365.	2.3	101
29	Regulation of u-PAR gene expression by H2A.Z is modulated by the MEK–ERK/AP-1 pathway. Nucleic Acids Research, 2012, 40, 600-613.	6.5	17
30	Determinants Outside the DevR C-Terminal Domain Are Essential for Cooperativity and Robust Activation of Dormancy Genes in Mycobacterium tuberculosis. PLoS ONE, 2011, 6, e16500.	1.1	24
31	Accelerated urokinase-receptor protein turnover triggered by interference with the addition of the glycolipid anchor. Biochemical Journal, 2011, 434, 233-242.	1.7	2
32	K182G substitution in DevR or C ₈ G mutation in the Dev box impairs protein–DNA interaction and abrogates DevRâ€mediated gene induction in <i>Mycobacteriumâ€∫tuberculosis</i> Journal, 2011, 278, 2131-2139.	2.2	9
33	Analysis of transcription at the oriC locus in Mycobacterium tuberculosis. Microbiological Research, 2011, 166, 508-514.	2.5	4
34	Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Research, 2011, 39, 7400-7414.	6.5	64
35	A single-nucleotide mutation in the â^10 promoter region inactivates the <i>narK2X </i> promoter in <i>Mycobacterium bovis </i> and <i>Mycobacterium bovis </i> BCG and has an application in diagnosis. FEMS Microbiology Letters, 2010, 303, 190-196.	0.7	16
36	Co-Expression of DevR and DevRN-Aph Proteins Is Associated with Hypoxic Adaptation Defect and Virulence Attenuation of Mycobacterium tuberculosis. PLoS ONE, 2010, 5, e9448.	1.1	16

#	Article	IF	CITATIONS
37	Powerful Induction of Divergent tgs1-Rv3131 Genes in Mycobacterium tuberculosis Is Mediated by DevR Interaction with a High-Affinity Site and an Adjacent Cryptic Low-Affinity Site. Journal of Bacteriology, 2009, 191, 6075-6081.	1.0	30
38	CmtR, a cadmiumâ€sensing ArsR–SmtB repressor, cooperatively interacts with multiple operator sites to autorepress its transcription in <i>Mycobacteriumâ€∫tuberculosis</i> . FEBS Journal, 2009, 276, 3428-3439.	2.2	28
39	Cooperative Binding of Phosphorylated DevR to Upstream Sites Is Necessary and Sufficient for Activation of the Rv3134c- <i>devRS</i> Operon in <i>Mycobacterium tuberculosis</i> the Induction of DevR Target Genes. Journal of Bacteriology, 2008, 190, 4301-4312.	1.0	76
40	Interaction of DevR with Multiple Binding Sites Synergistically Activates Divergent Transcription of narK2 -Rv1738 Genes in Mycobacterium tuberculosis. Journal of Bacteriology, 2008, 190, 5394-5403.	1.0	35
41	Transcription and autoregulation of the Rv3134c-devR-devS operon of Mycobacterium tuberculosis. Microbiology (United Kingdom), 2005, 151, 4045-4053.	0.7	60