
## John J Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/199658/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | First joint observation by the underground gravitational-wave detector KAGRA with GEO 600.<br>Progress of Theoretical and Experimental Physics, 2022, 2022, .                                  | 1.8 | 20        |
| 2  | Overview of KAGRA: Detector design and construction history. Progress of Theoretical and Experimental Physics, 2021, 2021, .                                                                   | 1.8 | 198       |
| 3  | Neutron star structure in Hořava-Lifshitz gravity. Physical Review D, 2021, 103, .                                                                                                             | 1.6 | 4         |
| 4  | Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, . | 1.8 | 66        |
| 5  | Time series anomaly detection for gravitational-wave detectors based on the Hilbert–Huang transform. Journal of the Korean Physical Society, 2021, 78, 878-885.                                | 0.3 | 5         |
| 6  | Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.                      | 1.5 | 7         |
| 7  | Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .                                                              | 1.8 | 7         |
| 8  | An arm length stabilization system for KAGRA and future gravitational-wave detectors. Classical and Quantum Gravity, 2020, 37, 035004.                                                         | 1.5 | 10        |
| 9  | First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA.<br>Classical and Quantum Gravity, 2019, 36, 165008.                                               | 1.5 | 45        |
| 10 | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.                                  | 8.2 | 808       |
| 11 | Sensing and Vetoing Loud Transient Noises for the Gravitational-wave Detection. Journal of the Korean Physical Society, 2018, 73, 1197-1210.                                                   | 0.3 | 2         |
| 12 | Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .                                                          | 1.8 | 73        |
| 13 | Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914.<br>Classical and Quantum Gravity, 2016, 33, 134001.                                       | 1.5 | 225       |
| 14 | Application of artificial neural network to search for gravitational-wave signals associated with short gamma-ray bursts. Classical and Quantum Gravity, 2015, 32, 245002.                     | 1.5 | 13        |
| 15 | Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data.<br>Physical Review D, 2013, 88, .                                                       | 1.6 | 89        |
| 16 | Yang-Mills instantons from gravitational instantons. Journal of High Energy Physics, 2011, 2011, 1.                                                                                            | 1.6 | 22        |
| 17 | An efficient representation of Euclidean gravity I. Journal of High Energy Physics, 2011, 2011, 1.                                                                                             | 1.6 | 8         |
| 18 | Absorption cross section in the topologically massive gravity atÂtheÂcritical point. European Physical<br>Journal C, 2010, 65, 275.                                                            | 1.4 | 6         |

Јони Ј Он

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gravitational collapse of the shells with the smeared gravitational source in noncommutative geometry. Journal of High Energy Physics, 2010, 2010, 1.                           | 1.6 | 12        |
| 20 | Role of angular momentum and cosmic censorship in(2+1)-dimensional rotating shell collapse.<br>Physical Review D, 2009, 79, .                                                   | 1.6 | 29        |
| 21 | Absorption cross section in warped AdS3black hole. Journal of High Energy Physics, 2009, 2009, 067-067.                                                                         | 1.6 | 26        |
| 22 | Gravitationally collapsing shells in(2+1)dimensions. Physical Review D, 2006, 74, .                                                                                             | 1.6 | 33        |
| 23 | Decay rate and low-energy near-horizon dynamics of acoustic black holes. Physics Letters, Section B:<br>Nuclear, Elementary Particle and High-Energy Physics, 2005, 608, 10-16. | 1.5 | 28        |
| 24 | Dilaton driven Hawking radiation in AdS2 black hole. Physics Letters, Section B: Nuclear, Elementary<br>Particle and High-Energy Physics, 1999, 461, 189-195.                   | 1.5 | 32        |