
P-A Glaude

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1996284/publications.pdf Version: 2024-02-01

P-A CLAUDE

#	Article	IF	CITATIONS
1	A comprehensive experimental and modeling study of isobutene oxidation. Combustion and Flame, 2016, 167, 353-379.	5.2	282
2	Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K. Combustion and Flame, 2005, 142, 170-186.	5.2	272
3	An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combustion and Flame, 2015, 162, 296-314.	5.2	270
4	An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. Journal of Physical Chemistry A, 2008, 112, 10843-10855.	2.5	257
5	Laminar burning velocity of gasolines with addition of ethanol. Fuel, 2014, 115, 162-169.	6.4	248
6	Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling – Advances and future refinements. Progress in Energy and Combustion Science, 2013, 39, 340-382.	31.2	183
7	Measurements of Laminar Flame Velocity for Components of Natural Gas. Energy & Fuels, 2011, 25, 3875-3884.	5.1	181
8	Experimental Confirmation of the Lowâ€Temperature Oxidation Scheme of Alkanes. Angewandte Chemie - International Edition, 2010, 49, 3169-3172.	13.8	180
9	Computer-Aided Derivation of Gas-Phase Oxidation Mechanisms: Application to the Modeling of the Oxidation of n-Butane. Combustion and Flame, 1998, 114, 81-102.	5.2	170
10	Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combustion and Flame, 2012, 159, 3455-3471.	5.2	165
11	Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels. Energy, 2012, 43, 4-18.	8.8	149
12	A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013, 160, 2291-2318.	5.2	143
13	Computer based generation of reaction mechanisms for gas-phase oxidation. Computers & Chemistry, 2000, 24, 541-560.	1.2	130
14	Experimental and Modeling Study of the Low-Temperature Oxidation of Large Alkanes. Energy & Fuels, 2008, 22, 2258-2269.	5.1	129
15	Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part III: 2,5-Dimethylfuran. Combustion and Flame, 2014, 161, 780-797.	5.2	127
16	Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combustion and Flame, 2010, 157, 2035-2050.	5.2	124
17	A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proceedings of the Combustion Institute, 2013, 34, 225-232.	3.9	121
18	Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification. Combustion and Flame, 2014, 161, 1474-1488.	5.2	118

#	Article	IF	CITATIONS
19	Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part I: Furan. Combustion and Flame, 2014, 161, 748-765.	5.2	117
20	An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combustion and Flame, 2011, 158, 756-773.	5.2	113
21	Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combustion and Flame, 2009, 156, 2129-2144.	5.2	112
22	Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chemical Society Reviews, 2011, 40, 4762.	38.1	111
23	Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part II: 2-Methylfuran. Combustion and Flame, 2014, 161, 766-779.	5.2	110
24	The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute, 2007, 31, 277-284.	3.9	108
25	Detailed product analysis during the low temperature oxidation of n-butane. Physical Chemistry Chemical Physics, 2011, 13, 296-308.	2.8	108
26	Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. Journal of Physical Chemistry A, 2013, 117, 1371-1392.	2.5	108
27	Adiabatic flame temperature from biofuels and fossil fuels and derived effect on NOx emissions. Fuel Processing Technology, 2010, 91, 229-235.	7.2	104
28	Modeling of the oxidation of large alkenes at low temperature. Proceedings of the Combustion Institute, 2005, 30, 1073-1081.	3.9	97
29	Detailed Kinetic Study of the Ring Opening of Cycloalkanes by CBS-QB3 Calculations. Journal of Physical Chemistry A, 2006, 110, 12693-12704.	2.5	97
30	Kinetic study of the combustion of organophosphorus compounds. Proceedings of the Combustion Institute, 2000, 28, 1749-1756.	3.9	89
31	Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels. , 0, , .		88
32	Experimental and modeling study of the oxidation of xylenes. International Journal of Chemical Kinetics, 2006, 38, 284-302.	1.6	88
33	Modeling of the oxidation ofn-octane andn-decane using an automatic generation of mechanisms. International Journal of Chemical Kinetics, 1998, 30, 949-959.	1.6	82
34	Experimental study of the oxidation of methyl oleate in a jet-stirred reactor. Combustion and Flame, 2010, 157, 1220-1229.	5.2	81
35	Modeling of the Gas-Phase Oxidation of Cyclohexane. Energy & Fuels, 2006, 20, 1450-1459.	5.1	80
36	Oxidation of methyl and ethyl butanoates. International Journal of Chemical Kinetics, 2010, 42, 226-252.	1.6	78

#	Article	IF	CITATIONS
37	Construction and simplification of a model for the oxidation of alkanes. Combustion and Flame, 2000, 122, 451-462.	5.2	77
38	Detailed chemical kinetic reaction mechanisms for incineration of organophosphorus and fluoroorganophosphorus compounds. Proceedings of the Combustion Institute, 2002, 29, 2469-2476.	3.9	74
39	Theoretical Kinetic Study of Thermal Unimolecular Decomposition of Cyclic Alkyl Radicals. Journal of Physical Chemistry A, 2008, 112, 11598-11610.	2.5	73
40	An experimental and modeling study of the combustion of tetrahydrofuran. Combustion and Flame, 2015, 162, 1899-1918.	5.2	72
41	An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 2013, 160, 2319-2332.	5.2	71
42	Oxidation of small alkenes at high temperature. International Journal of Chemical Kinetics, 2002, 34, 666-677.	1.6	70
43	An experimental and kinetic modeling study of the autoignition of α-methylnaphthalene/air and α-methylnaphthalene/n-decane/air mixtures at elevated pressures. Combustion and Flame, 2010, 157, 1976-1988.	5.2	67
44	Influence of the position of the double bond on the autoignition of linear alkenes at low temperature. Proceedings of the Combustion Institute, 2009, 32, 387-394.	3.9	66
45	Computer tools for modelling the chemical phenomena related to combustion. Chemical Engineering Science, 2000, 55, 2883-2893.	3.8	64
46	New experimental evidences about the formation and consumption of ketohydroperoxides. Proceedings of the Combustion Institute, 2011, 33, 325-331.	3.9	64
47	Modeling study of the low-temperature oxidation of large methyl esters from C11 to C19. Proceedings of the Combustion Institute, 2011, 33, 391-398.	3.9	63
48	Experimental and modeling study of the oxidation of 1-pentene at high temperature. International Journal of Chemical Kinetics, 2005, 37, 451-463.	1.6	62
49	Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics. Journal of Physical Chemistry A, 2015, 119, 7462-7480.	2.5	62
50	Modeling the Oxidation of Mixtures of Primary Reference Automobile Fuels. Energy & Fuels, 2002, 16, 1186-1195.	5.1	61
51	Computer-aided design of gas-phase oxidation mechanisms—Application to the modeling of n-heptane and iso-octane oxidation. Proceedings of the Combustion Institute, 1996, 26, 755-762.	0.3	60
52	Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers. Combustion and Flame, 2000, 121, 345-355.	5.2	59
53	Experimental and modeling study of the oxidation of cyclohexene. International Journal of Chemical Kinetics, 2003, 35, 273-285.	1.6	59
54	Experimental and modeling study of the oxidation of n-butylbenzene. Combustion and Flame, 2012, 159, 1399-1416.	5.2	59

P-A Glaude

#	Article	IF	CITATIONS
55	Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames. Proceedings of the Combustion Institute, 2015, 35, 1735-1743.	3.9	59
56	Modeling of the gas-phase oxidation of n-decane from 550 to 1600 K. Proceedings of the Combustion Institute, 2000, 28, 1597-1605.	3.9	58
57	Experimental and modeling study of 1-hexene oxidation behind reflected shock waves. Proceedings of the Combustion Institute, 2005, 30, 1137-1145.	3.9	57
58	Study of the Low Temperature Oxidation of Propane. Journal of Physical Chemistry A, 2012, 116, 12214-12228.	2.5	57
59	Mechanisms and Kinetics of Methane Thermal Conversion in a Syngas. Industrial & Engineering Chemistry Research, 2009, 48, 6564-6572.	3.7	55
60	Kinetic Modeling of the Mutual Oxidation of NO and Larger Alkanes at Low Temperature. Energy & Fuels, 2005, 19, 1839-1849.	5.1	51
61	Theoretical Kinetic Study of the Reactions of Cycloalkylperoxy Radicals. Journal of Physical Chemistry A, 2009, 113, 6924-6935.	2.5	51
62	The gas-phase oxidation ofn-hexadecane. International Journal of Chemical Kinetics, 2001, 33, 574-586.	1.6	50
63	Experimental and modeling study of the thermal decomposition of methyl decanoate. Combustion and Flame, 2011, 158, 1288-1300.	5.2	50
64	Products from the Oxidation of Linear Isomers of Hexene. Journal of Physical Chemistry A, 2014, 118, 673-683.	2.5	50
65	Measurements of Laminar Burning Velocities above Atmospheric Pressure Using the Heat Flux Method—Application to the Case of <i>n-</i> Pentane. Energy & Fuels, 2015, 29, 398-404.	5.1	49
66	New experimental evidence and modeling study of the ethylbenzene oxidation. Proceedings of the Combustion Institute, 2013, 34, 325-333.	3.9	48
67	Measurements of flat-flame velocities of diethyl ether in air. Energy, 2012, 43, 140-145.	8.8	47
68	Quantification of Hydrogen Peroxide during the Low-Temperature Oxidation of Alkanes. Journal of the American Chemical Society, 2012, 134, 11944-11947.	13.7	46
69	Detailed Product Analysis during Low- and Intermediate-Temperature Oxidation of Ethylcyclohexane. Journal of Physical Chemistry A, 2012, 116, 5100-5111.	2.5	44
70	Experimental and Modeling Study of Premixed Laminar Flames of Ethanol and Methane. Energy & Fuels, 2013, 27, 2226-2245.	5.1	44
71	Experimental and modeling study of burning velocities for alkyl aromatic components relevant to diesel fuels. Proceedings of the Combustion Institute, 2015, 35, 341-348.	3.9	43
72	Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements. Physical Chemistry Chemical Physics, 2013, 15, 19686.	2.8	42

#	Article	IF	CITATIONS
73	Low temperature oxidation of benzene and toluene in mixture with n-decane. Proceedings of the Combustion Institute, 2013, 34, 297-305.	3.9	42
74	Automatic reduction of detailed mechanisms of combustion of alkanes by chemical lumping. International Journal of Chemical Kinetics, 2000, 32, 36-51.	1.6	41
75	Kinetic Study of the Pyrolysis and Oxidation of Guaiacol. Journal of Physical Chemistry A, 2018, 122, 7894-7909.	2.5	41
76	Experimental and modeling study of the oxidation of 1-butyne and 2-butyne. International Journal of Chemical Kinetics, 2002, 34, 172-183.	1.6	39
77	A lean methane premixed laminar flame doped with components of diesel fuell. n-Butylbenzene. Combustion and Flame, 2009, 156, 954-974.	5.2	37
78	The oxidation of large alkylbenzenes: An experimental and modeling study. Proceedings of the Combustion Institute, 2015, 35, 349-356.	3.9	34
79	Experimental Study of Tetrahydrofuran Oxidation and Ignition in Low-Temperature Conditions. Energy & Fuels, 2015, 29, 6118-6125.	5.1	33
80	Performance of lignin derived compounds as octane boosters. Fuel, 2017, 189, 284-292.	6.4	33
81	Rich methane premixed laminar flames doped with light unsaturated hydrocarbonsI. Allene and propyne. Combustion and Flame, 2006, 146, 620-634.	5.2	32
82	Oxidation of small unsaturated methyl and ethyl esters. International Journal of Chemical Kinetics, 2011, 43, 204-218.	1.6	32
83	Extension of the composite CBS-QB3 method to singlet diradical calculations. Chemical Physics Letters, 2007, 435, 152-156.	2.6	31
84	Rich premixed laminar methane flames doped by light unsaturated hydrocarbons. Combustion and Flame, 2007, 151, 245-261.	5.2	30
85	A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane. Combustion and Flame, 2010, 157, 1236-1260.	5.2	30
86	Unimolecular decomposition of tetrahydrofuran: Carbene vs. diradical pathways. Proceedings of the Combustion Institute, 2015, 35, 533-541.	3.9	30
87	Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions. Journal of Analytical and Applied Pyrolysis, 2016, 122, 342-354.	5.5	30
88	Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds. Journal of Physical Chemistry A, 2015, 119, 10527-10539.	2.5	29
89	Steam reforming of methane in a synthesis gas from biomass gasification. International Journal of Hydrogen Energy, 2016, 41, 18329-18338.	7.1	29
90	Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines. International Journal of Vehicle Design, 2007, 44, 124.	0.3	28

#	Article	IF	CITATIONS
91	Lean methane premixed laminar flames doped by components of diesel fuel II: n-Propylcyclohexane. Combustion and Flame, 2010, 157, 75-90.	5.2	28
92	Experimental and modeling study of ultra-rich oxidation of n-heptane. Fuel, 2015, 144, 358-368.	6.4	28
93	Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran. Combustion and Flame, 2017, 176, 409-428.	5.2	28
94	Experimental and modeling study of the autoignition of 1-hexene/isooctane mixtures at low temperatures. Combustion and Flame, 2006, 145, 272-281.	5.2	26
95	Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS. Chemical Physics Letters, 2012, 534, 1-7.	2.6	26
96	A Tentative Modeling Study of the Effect of Wall Reactions on Oxidation Phenomena. Energy & Fuels, 2008, 22, 3736-3743.	5.1	22
97	A comparative study of the formation of aromatics in rich methane flames doped by unsaturated compounds. Fuel, 2009, 88, 1388-1393.	6.4	22
98	Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. Combustion and Flame, 2008, 152, 245-261.	5.2	21
99	Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes. Fuel, 2011, 90, 528-535.	6.4	20
100	Experimental and kinetic modeling study of ethyl butanoate oxidation in a laminar tubular plug flow reactor. Fuel, 2011, 90, 3237-3253.	6.4	19
101	Pyrolysis and combustion chemistry of tetrahydropyran: Experimental and modeling study. Combustion and Flame, 2015, 162, 4283-4303.	5.2	19
102	Pericyclic reactions in ether biofuels. Proceedings of the Combustion Institute, 2017, 36, 569-576.	3.9	18
103	Prediction of Auto-Ignition Temperatures and Delays for Gas Turbine Applications. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	1.1	17
104	Explosions of methane/air/nanoparticles mixtures: Comparison between carbon black and inert particles. Chemical Engineering Research and Design, 2017, 110, 77-88.	5.6	17
105	Chemical lumping of mechanisms generated by computer. Application to the modelling of normal butane oxidation. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1996, 93, 1472-1491.	0.2	16
106	Experimental and modelling study of the effect of CF3H, C2F6 and CF3Br on the ignition delays of methane-oxygen-argon mixtures behind shock waves. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1997, 94, 460-476.	0.2	16
107	Modeling the Laminar Flame Speed of Natural Gas and Gasoline Surrogates. , 0, , .		13
108	Influence of carbon black nanoparticles on the front flame velocity of methane/air explosions. Journal of Loss Prevention in the Process Industries, 2017, 49, 919-928.	3.3	13

#	Article	IF	CITATIONS
109	The importance of endothermic pyrolysis reactions in the understanding of diesel spray combustion. Fuel, 2018, 224, 302-310.	6.4	13
110	Auto-ignition control using an additive with adaptable chemical structure. Part I: Development of a kinetic model for 1,3-cyclohexadiene and 1,3,5-hexatriene combustion. Combustion and Flame, 2019, 205, 466-483.	5.2	13
111	Experimental and numerical investigation of the promoting effect of a cetane booster in a low-octane gasoline fuel in a rapid compression machine: A study of 2-ethylhexyl nitrate. Combustion and Flame, 2020, 222, 36-47.	5.2	13
112	JTHERGAS: Thermodynamic estimation from 2D graphical representations of molecules. Energy, 2012, 43, 161-171.	8.8	12
113	CFD modelling of cyclohexane auto-ignition in an RCM. Fuel, 2012, 96, 192-203.	6.4	12
114	Numerical study of the influence of particle reaction and radiative heat transfer on the flame velocity of gas/nanoparticles hybrid mixtures. Chemical Engineering Research and Design, 2018, 118, 211-226.	5.6	12
115	Inhibiting effect of CF3I on the reaction between CH4 and O2 in a jet-stirred reactor. Combustion and Flame, 1997, 109, 285-292.	5.2	11
116	Use of detailed kinetic mechanisms for the prediction of autoignitions. Journal of Loss Prevention in the Process Industries, 2006, 19, 227-232.	3.3	11
117	Experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon. Combustion, Explosion and Shock Waves, 2013, 49, 11-18.	0.8	11
118	Experimental and kinetic modeling of the ignition delays of cyclohexane, cyclohexene, and cyclohexadienes: Effect of unsaturation. Proceedings of the Combustion Institute, 2021, 38, 1017-1024.	3.9	11
119	Polycyclic aromatic hydrocarbon (PAH) formation during acetylene pyrolysis in tubular reactor under low pressure carburizing conditions. Chemical Engineering Science, 2019, 202, 84-94.	3.8	10
120	Experimental and modeling study of the autoignition of cyclopentene. International Journal of Chemical Kinetics, 2008, 40, 25-33.	1.6	8
121	The oxidation of the novel lignocellulosic biofuel γ-valerolactone in a low pressure flame. Proceedings of the Combustion Institute, 2017, 36, 577-585.	3.9	8
122	Thermal Decomposition of Phosgene and Diphosgene. Journal of Physical Chemistry A, 2018, 122, 249-257.	2.5	8
123	The decisive role of pericyclic reactions in the thermal decomposition of organophosphorus compounds. Proceedings of the Combustion Institute, 2021, 38, 719-727.	3.9	8
124	Development of a Detailed Kinetic Model for the Oxidation of <i>n</i> Butane in the Liquid Phase. Journal of Physical Chemistry B, 2021, 125, 6955-6967.	2.6	8
125	Stability of Olefin-Containing Process Gases as an Alternative Fuel for Gas Turbines. Industrial & Engineering Chemistry Research, 2005, 44, 4212-4220.	3.7	7
126	Experimental study of the structure of a lean premixed indane/CH4/O2/Ar flame. Combustion, Explosion and Shock Waves, 2010, 46, 132-139.	0.8	7

#	Article	IF	CITATIONS
127	Chemical effects of ferrocene and 2-ethylhexyl nitrate on a low-octane gasoline: An experimental and numerical RCM study. Proceedings of the Combustion Institute, 2021, 38, 441-448.	3.9	7
128	Combustion and Oxidation Kinetics of Alternative Gas Turbines Fuels. , 2014, , .		6
129	Comparison of the Effects of Different Biofuels on the Oxidation Stability of a Hydrocarbon Fuel. , 0, ,		6
130	Kinetic modeling of the thermal destruction of mustard gas. Proceedings of the Combustion Institute, 2017, 36, 499-506.	3.9	5
131	Study of Polycyclic Aromatic Hydrocarbon formation during acetylene pyrolysis in a jet-stirred-reactor and numerical investigations of residence time distribution using CFD simulations. Chemical Engineering Journal, 2019, 377, 120244.	12.7	5
132	Laminar flame structure of ethyl pentanoate at low and atmospheric-pressure: Experimental and kinetic modeling study. Energy, 2021, 215, 119115.	8.8	5
133	Determination of heterogeneous reaction mechanisms: A key milestone in dust explosion modelling. Journal of Loss Prevention in the Process Industries, 2021, 73, 104589.	3.3	5
134	Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas. Journal of Physical Chemistry A, 2017, 121, 3254-3262.	2.5	4
135	Experiments and modeling of octanoic acid pyrolysis in a plug flow reactor. Journal of Analytical and Applied Pyrolysis, 2020, 146, 104767.	5.5	4
136	Theoretical study of the gas-phase thermal decomposition of urea. Proceedings of the Combustion Institute, 2021, 38, 355-364.	3.9	4
137	Autoignition Control Using an Additive with Adaptable Chemical Structure. Part 2. Development of a PRF Kinetic Model Including 1,3-Cyclohexadiene Mechanism and Simulations of Ignition Control. Energy & Fuels, 2019, 33, 12704-12713.	5.1	3
138	Acetylene pyrolysis in a jet-stirred-reactor for low pressure gas carburizing process – Experiments, kinetic modeling and mixing intensity investigations by CFD simulation. Chemical Engineering Science, 2019, 195, 810-819.	3.8	3
139	Theoretical study of the pyrolysis of \hat{l}^2 -1,4-xylan: a detailed investigation on unimolecular concerted reactions. Physical Chemistry Chemical Physics, 2021, 23, 2605-2621.	2.8	3
140	Laminar Flame Velocity of Components of Natural Gas. , 2011, , .		2
141	Kinetic modeling of the thermal destruction of lewisite. Journal of Hazardous Materials, 2020, 398, 123086.	12.4	2
142	Experimental study of the structure of a rich premixed 1,3-butadiene/CH4/O2/Ar flame. Combustion, Explosion and Shock Waves, 2006, 42, 702-707.	0.8	1
143	Special issue dedicated to "Cleaner Combustion 2011―conference. Energy, 2012, 43, 2-3.	8.8	0
144	Prediction of Auto-Ignition Temperatures and Delays for Gas Turbine Applications. , 2015, , .		0

Prediction of Auto-Ignition Temperatures and Delays for Gas Turbine Applications. , 2015, , . 144

9

#	Article	IF	CITATIONS
145	Development of a Model for Auto-Ignition Delays and its Use for the Prediction of Premix Combustion Reliability. , 2016, , .		0
146	Combustion and Pyrolysis Kinetics of Chloropicrin. Journal of Physical Chemistry A, 2018, 122, 5735-5741.	2.5	0
147	Cas Turbines in Alternative Fuel Applications: How to Predict the Stability of Olefin-Containing Process Gases. , 2003, , .		0
148	Design of a Bench-Scale Tubular Reactor Similar to Plug Flow Reactor for Gas-Phase Kinetic Data Generation-Illustration with the Pyrolysis of Octanoic Acid. Processes, 2021, 9, 2270.	2.8	0