
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1996170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous soluble dialdehyde cellulose beads: A new carrier for the formulation of poorly water-soluble drugs. International Journal of Pharmaceutics, 2022, 615, 121491.	5.2	9
2	The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying. Pharmaceutics, 2022, 14, 613.	4.5	2
3	Solvatomorphism in Miconazole: The Role of Weak C–H···Cl Hydrogen Bonds and C–Cl···Cl–C Halog Interactions in Similarities and Differences in the Crystal Packing. Crystal Growth and Design, 2022, 22, 2703-2724.	gen 3.0	5
4	Gaining Insight into the Role of the Solvent during Spray Drying of Amorphous Solid Dispersions by Studying Evaporation Kinetics. Molecular Pharmaceutics, 2022, 19, 1604-1618.	4.6	3
5	Investigating the Potential of Ethyl Cellulose and a Porosity-Increasing Agent as a Carrier System for the Formulation of Amorphous Solid Dispersions. Molecular Pharmaceutics, 2022, 19, 2712-2724.	4.6	4
6	Complementarity of mDSC, DMA, and DRS Techniques in the Study of <i>T</i> _g and Sub- <i>T</i> _g Transitions in Amorphous Solids: PVPVA, Indomethacin, and Amorphous Solid Dispersions Based on Indomethacin/PVPVA. Molecular Pharmaceutics, 2022, 19, 2299-2315.	4.6	8
7	TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract. Molecules, 2021, 26, 1030.	3.8	10
8	Picking up good vibrations: Exploration of the intensified vibratory mill via a modern design of experiments. International Journal of Pharmaceutics, 2021, 598, 120367.	5.2	0
9	Shedding a light on the physical stability of suspensions micronised with intensified vibratory milling; A trend observed with decreasing particle size as a function of time. International Journal of Pharmaceutics, 2021, 603, 120687.	5.2	3
10	Solvent influence on manufacturability, phase behavior and morphology of amorphous solid dispersions prepared via bead coating. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 175-188.	4.3	4
11	The underestimated contribution of the solvent to the phase behavior of highly drug loaded amorphous solid dispersions. International Journal of Pharmaceutics, 2021, 609, 121201.	5.2	7
12	Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112937.	2.8	60
13	Feasibility of electrospraying fully aqueous bovine serum albumin solutions. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 147, 102-110.	4.3	7
14	Fixed dose combinations for cardiovascular treatment via coaxial electrospraying: Coated amorphous solid dispersion particles. International Journal of Pharmaceutics, 2020, 577, 118949.	5.2	8
15	The influence of crushing amorphous solid dispersion dosage forms on the in-vitro dissolution kinetics. International Journal of Pharmaceutics, 2020, 573, 118884.	5.2	8
16	Gastro-resistant encapsulation of amorphous solid dispersions containing darunavir by coaxial electrospraying. International Journal of Pharmaceutics, 2020, 574, 118885.	5.2	13
17	Electrospraying the Triblock Copolymer SEBS: The Effect of Solvent System and the Embedding of Quantum Dots. Macromolecular Materials and Engineering, 2020, 305, 1900658.	3.6	4
18	Development of a Surface Coating Technique with Predictive Value for Bead Coating in the Manufacturing of Amorphous Solid Dispersions. Pharmaceutics, 2020, 12, 878.	4.5	4

#	Article	IF	CITATIONS
19	Formulating monoclonal antibodies as powders for reconstitution at high concentration using spray-drying: Trehalose/amino acid combinations as reconstitution time reducing and stability improving formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 156, 131-142.	4.3	25
20	Exploration of the heat generation within the intensified vibratory mill. International Journal of Pharmaceutics, 2020, 587, 119644.	5.2	1
21	Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying. Pharmaceutics, 2020, 12, 625.	4.5	72
22	Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- <i>n</i> -propyl-2-oxazoline). Macromolecules, 2020, 53, 7590-7600.	4.8	9
23	Unravelling the Miscibility of Poly(2-oxazoline)s: A Novel Polymer Class for the Formulation of Amorphous Solid Dispersions. Molecules, 2020, 25, 3587.	3.8	6
24	Mechanodegradation of Polymers: A Limiting Factor of Mechanochemical Activation in the Production of Amorphous Solid Dispersions by Cryomilling. Molecular Pharmaceutics, 2020, 17, 2987-2999.	4.6	6
25	Advancing predictions of protein stability in the solid state. Physical Chemistry Chemical Physics, 2020, 22, 17247-17254.	2.8	13
26	Preparation of Amorphous Solid Dispersions by Cryomilling: Chemical and Physical Concerns Related to Active Pharmaceutical Ingredients and Carriers. Molecular Pharmaceutics, 2020, 17, 1001-1013.	4.6	17
27	Myth or Truth: The Glass Forming Ability Class III Drugs Will Always Form Single-Phase Homogenous Amorphous Solid Dispersion Formulations. Pharmaceutics, 2019, 11, 529.	4.5	14
28	Tracking solid state dynamics in spray-dried protein powders at infrared and terahertz frequencies. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 244-251.	4.3	7
29	Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 79-90.	4.3	25
30	Size Analysis of Small Particles in Wet Dispersions by Laser Diffractometry: A Guidance to Quality Data. Journal of Pharmaceutical Sciences, 2019, 108, 1905-1914.	3.3	12
31	Complex amorphous solid dispersions based on poly(2-hydroxyethyl methacrylate): Study of drug release from a hydrophilic insoluble polymeric carrier in the presence and absence of a porosity increasing agent. International Journal of Pharmaceutics, 2019, 566, 77-88.	5.2	8
32	Drug-carrier binding and enzymatic carrier digestion in amorphous solid dispersions containing proteins as carrier. International Journal of Pharmaceutics, 2019, 563, 358-372.	5.2	8
33	Chemically identical but physically different: A comparison of spray drying, hot melt extrusion and cryo-milling for the formulation of high drug loaded amorphous solid dispersions of naproxen. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 135, 1-12.	4.3	46
34	Formulating monoclonal antibodies as powders for reconstitution at high concentration using spray drying: Models and pitfalls. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 407-422.	4.3	27
35	Microstructure of Pharmaceutical Semicrystalline Dispersions: The Significance of Polymer Conformation. Molecular Pharmaceutics, 2018, 15, 629-641.	4.6	12
36	Polymorphism of Indomethacin in Semicrystalline Dispersions: Formation, Transformation, and Segregation. Molecular Pharmaceutics, 2018, 15, 1037-1051.	4.6	42

#	Article	IF	CITATIONS
37	Exploring the feasibility of the use of biopolymers as a carrier in the formulation of amorphous solid dispersions – Part I: Gelatin. International Journal of Pharmaceutics, 2018, 535, 47-58.	5.2	28
38	Amorphous solid dispersions of darunavir: Comparison between spray drying and electrospraying. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 96-107.	4.3	32
39	Ability of gelatin and BSA to stabilize the supersaturated state of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 211-223.	4.3	14
40	Development of enteric-coated fixed dose combinations of amorphous solid dispersions of ezetimibe and lovastatin: Investigation of formulation and process parameters. International Journal of Pharmaceutics, 2017, 520, 49-58.	5.2	11
41	Controlling the Release of Indomethacin from Class Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis. Molecular Pharmaceutics, 2017, 14, 959-973.	4.6	16
42	Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 2: The Influence of Formulation Parameters on Drug Release. Molecular Pharmaceutics, 2017, 14, 974-983.	4.6	8
43	A study of the aggregation of cyclodextrins: Determination of the critical aggregation concentration, size of aggregates and thermodynamics using isodesmic and K2–K models. International Journal of Pharmaceutics, 2017, 521, 318-326.	5.2	25
44	Eudragit® RL as a stabilizer for supersaturation and a substrate for nanocrystal formation. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 250-262.	4.3	10
45	Electrospraying of polymer solutions: Study of formulation and process parameters. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 114-124.	4.3	69
46	Spectroscopic Investigation of the Formation and Disruption of Hydrogen Bonds in Pharmaceutical Semicrystalline Dispersions. Molecular Pharmaceutics, 2017, 14, 1726-1741.	4.6	19
47	Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 50-59.	4.3	20
48	One-step production of darunavir solid dispersion nanoparticles coated with enteric polymers using electrospraying. Journal of Pharmacy and Pharmacology, 2016, 68, 625-633.	2.4	22
49	Effect of Compression on the Molecular Arrangement of Itraconazole–Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation?. Molecular Pharmaceutics, 2016, 13, 1879-1893.	4.6	38
50	Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 220-225.	4.3	81
51	The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opinion on Drug Delivery, 2016, 13, 1681-1694.	5.0	98
52	Pharmaceutical Applications of Electrospraying. Journal of Pharmaceutical Sciences, 2016, 105, 2601-2620.	3.3	139
53	The role of the carrier in the formulation of pharmaceutical solid dispersions. Part I: crystalline and semi-crystalline carriers. Expert Opinion on Drug Delivery, 2016, 13, 1583-1594.	5.0	46
54	Spray drying formulation of amorphous solid dispersions. Advanced Drug Delivery Reviews, 2016, 100, 27-50.	13.7	361

#	Article	IF	CITATIONS
55	Crystallization Kinetics of Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings. Molecular Pharmaceutics, 2015, 12, 2493-2504.	4.6	30
56	The Peculiar Behavior of the Glass Transition Temperature of Amorphous Drug-Polymer Films Coated on Inert Sugar Spheres. Journal of Pharmaceutical Sciences, 2015, 104, 1759-1766.	3.3	8
57	The Influence of Spray-Drying Parameters on Phase Behavior, Drug Distribution, and In Vitro Release of Injectable Microspheres for Sustained Release. Journal of Pharmaceutical Sciences, 2015, 104, 1451-1460.	3.3	27
58	Influence of formulation composition and process on the characteristics and in vitro release from PLGA-based sustained release injectables. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 90, 22-29.	4.3	10
59	Combination of (M)DSC and Surface Analysis to Study the Phase Behaviour and Drug Distribution of Ternary Solid Dispersions. Pharmaceutical Research, 2015, 32, 1407-1416.	3.5	11
60	Structural and Dynamic Properties of Amorphous Solid Dispersions: The Role of Solid-State Nuclear Magnetic Resonance Spectroscopy and Relaxometry. Journal of Pharmaceutical Sciences, 2014, 103, 2635-2662.	3.3	103
61	Drug–Polymer Miscibility across a Spray Dryer: A Case Study of Naproxen and Miconazole Solid Dispersions. Molecular Pharmaceutics, 2014, 11, 1094-1101.	4.6	28
62	Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 2013, 453, 253-284.	5.2	442
63	An Investigation into the Effect of Spray Drying Temperature and Atomizing Conditions on Miscibility, Physical Stability, and Performance of Naproxen–PVP K 25 Solid Dispersions. Journal of Pharmaceutical Sciences, 2013, 102, 1249-1267.	3.3	36
64	The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discovery Today: Technologies, 2012, 9, e79-e85.	4.0	436
65	Relating Hydrogen-Bonding Interactions with the Phase Behavior of Naproxen/PVP K 25 Solid Dispersions: Evaluation of Solution-Cast and Quench-Cooled Films. Molecular Pharmaceutics, 2012, 9, 3301-3317.	4.6	40
66	Effect of Compression on Non-isothermal Crystallization Behaviour of Amorphous Indomethacin. Pharmaceutical Research, 2012, 29, 2489-2498.	3.5	41
67	Can compression induce demixing in amorphous solid dispersions? A case study of naproxen–PVP K25. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 207-213.	4.3	62
68	Nanoscale Surface Characterization and Miscibility Study of a Spray-Dried Injectable Polymeric Matrix Consisting of Poly(lactic-co-glycolic acid) and Polyvinylpyrrolidone. Journal of Pharmaceutical Sciences, 2012, 101, 3473-3485.	3.3	20
69	Influence of Solvent Composition on the Miscibility and Physical Stability of Naproxen/PVP K 25 Solid Dispersions Prepared by Cosolvent Spray-Drying. Pharmaceutical Research, 2012, 29, 251-270.	3.5	84
70	Comparison Between Hot-Melt Extrusion and Spray-Drying for Manufacturing Solid Dispersions of the Graft Copolymer of Ethylene Glycol and Vinylalcohol. Pharmaceutical Research, 2011, 28, 673-682.	3.5	56
71	Review: physical chemistry of solid dispersions. Journal of Pharmacy and Pharmacology, 2010, 61, 1571-1586.	2.4	443
72	Co-administration of darunavir and a new pharmacokinetic booster: Formulation strategies and evaluation in dogs. European Journal of Pharmaceutical Sciences, 2010, 41, 193-200.	4.0	6

#	Article	IF	CITATIONS
73	Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 354-365.	4.3	111
74	Downscaling Drug Nanosuspension Production: Processing Aspects and Physicochemical Characterization. AAPS PharmSciTech, 2009, 10, 44-53.	3.3	52
75	Review: physical chemistry of solid dispersions. Journal of Pharmacy and Pharmacology, 2009, 61, 1571-1586.	2.4	113
76	Influence of polyethylene glycol chain length on compatibility and release characteristics of ternary solid dispersions of itraconazole in polyethylene glycol/hydroxypropylmethylcellulose 2910 E5 blends. European Journal of Pharmaceutical Sciences, 2008, 35, 203-210.	4.0	31
77	Physical State of Poorly Water Soluble Therapeutic Molecules Loaded into SBA-15 Ordered Mesoporous Silica Carriers: A Case Study with Itraconazole and Ibuprofen. Langmuir, 2008, 24, 8651-8659.	3.5	212
78	Correlation between the permeability of metoprolol tartrate through plasticized isolated ethylcellulose/hydroxypropyl methylcellulose films and drug release from reservoir pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 485-490.	4.3	42
79	Colon drug delivery. Expert Opinion on Drug Delivery, 2006, 3, 111-125.	5.0	100
80	Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. European Journal of Pharmaceutical Sciences, 2005, 24, 179-186.	4.0	140