Oscar Alejandro Pérez-Escobar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995980/publications.pdf

Version: 2024-02-01

257101 264894 61 2,258 24 42 citations h-index g-index papers 69 69 69 2882 docs citations times ranked all docs citing authors

#	Article	IF	Citations
1	The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science, 2022, 27, 364-378.	4.3	67
2	Understanding climate change impacts on biome and plant distributions in the Andes: Challenges and opportunities. Journal of Biogeography, 2022, 49, 1420-1442.	1.4	27
3	Whole plastomes are not enough: phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade <i>Ophrys</i> sect. <i>Sphegodes</i> Journal of Experimental Botany, 2021, 72, 654-681.	2.4	15
4	Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution. Scientific Reports, 2021, 11, 6858.	1.6	30
5	A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
6	Botanical Monography in the Anthropocene. Trends in Plant Science, 2021, 26, 433-441.	4.3	23
7	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	3.5	14
8	A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. American Journal of Botany, 2021, 108, 1087-1111.	0.8	53
9	Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. American Journal of Botany, 2021, 108, 1166-1180.	0.8	35
10	Plastome Evolution in the Hyperdiverse Genus Euphorbia (Euphorbiaceae) Using Phylogenomic and Comparative Analyses: Large-Scale Expansion and Contraction of the Inverted Repeat Region. Frontiers in Plant Science, 2021, 12, 712064.	1.7	16
11	Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nature Communications, 2021, 12, 354.	5.8	43
12	Genomeâ€wide transcriptome signatures of antâ€farmed <i>Squamellaria</i> epiphytes reveal key functions in a unique symbiosis. Ecology and Evolution, 2021, 11, 15882-15895.	0.8	3
13	The climatic challenge: Which plants will people use in the next century?. Environmental and Experimental Botany, 2020, 170, 103872.	2.0	45
14	Transitions between the Terrestrial and Epiphytic Habit Drove the Evolution of Seed-Aerodynamic Traits in Orchids. American Naturalist, 2020, 195, 275-283.	1.0	11
15	Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data. Molecular Phylogenetics and Evolution, 2020, 144, 106672.	1.2	23
16	Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet, 2020, 2, 421-445.	1.6	130
17	Plant Power: Opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms. Plants People Planet, 2020, 2, 446-462.	1.6	11
18	Untapped resources for medical research. Science, 2020, 369, 781-782.	6.0	9

#	Article	IF	CITATIONS
19	Introgression across evolutionary scales suggests reticulation contributes to Amazonian tree diversity. Molecular Ecology, 2020, 29, 4170-4185.	2.0	23
20	An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea. Scientific Reports, 2020, 10, 14123.	1.6	12
21	Repetitive DNA Restructuring Across Multiple Nicotiana Allopolyploidisation Events Shows a Lack of Strong Cytoplasmic Bias in Influencing Repeat Turnover. Genes, 2020, 11, 216.	1.0	6
22	Tradeoffs in the evolution of plant farming by ants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2535-2543.	3.3	8
23	Random Tanglegram Partitions (Random TaPas): An Alexandrian Approach to the Cophylogenetic Gordian Knot. Systematic Biology, 2020, 69, 1212-1230.	2.7	18
24	<i>Squamellaria</i> : Plants domesticated by ants. Plants People Planet, 2019, 1, 302-305.	1.6	4
25	Farming by ants remodels nutrient uptake in epiphytes. New Phytologist, 2019, 223, 2011-2023.	3.5	21
26	Phylogenetic comparative methods improve the selection of characters for generic delimitations in a hyperdiverse Neotropical orchid clade. Scientific Reports, 2019, 9, 15098.	1.6	12
27	The Origin and Diversification of the Hyperdiverse Flora in the Choc \tilde{A}^3 Biogeographic Region. Frontiers in Plant Science, 2019, 10, 1328.	1.7	45
28	A roadmap for global synthesis of the plant tree of life. American Journal of Botany, 2018, 105, 614-622.	0.8	38
29	Digest: Shape-shifting in Solanaceae flowers: The influence of pollinators*. Evolution; International Journal of Organic Evolution, 2018, 72, 717-718.	1.1	2
30	Digest: Drivers of coral diversification in a major marine biodiversity hotspot*. Evolution; International Journal of Organic Evolution, 2018, 72, 406-408.	1.1	4
31	Is Amazonia a â€`museum' for Neotropical trees? The evolution of the Brownea clade (Detarioideae,) Tj ETQq1	1 0.7843 1.2	14 rgBT /0
32	Mining threatens Colombian ecosystems. Science, 2018, 359, 1475-1475.	6.0	33
33	From tree tops to the ground: Reversals to terrestrial habit in Galeandra orchids (Epidendroideae:) Tj ETQq $1\ 1\ 0.78$	34314 rgB 1.2	T_IOverlock
34	Anchored hybrid enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex. Molecular Phylogenetics and Evolution, 2018, 129, 27-47.	1.2	42
35	Recurrent breakdowns of mutualisms with ants in the neotropical ant-plant genus Cecropia (Urticaceae). Molecular Phylogenetics and Evolution, 2017, 111, 196-205.	1.2	18
36	A NEW SPECIES OF TELIPOGON (ONCIDIINAE; ORCHIDACEAE) FROM THE PARAMOS OF COLOMBIA. Phytotaxa, 2017, 305, 262.	0.1	1

#	Article	IF	CITATIONS
37	Recent origin and rapid speciation of Neotropical orchids in the world's richest plant biodiversity hotspot. New Phytologist, 2017, 215, 891-905.	3.5	170
38	Partner abundance controls mutualism stability and the pace of morphological change over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3951-3956.	3.3	50
39	The assembly of ant-farmed gardens: mutualism specialization following host broadening. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161759.	1.2	26
40	The interactions of ants with their biotic environment. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170013.	1.2	18
41	Geographical structure, narrow species ranges, and <scp>C</scp> enozoic diversification in a pantropical clade of epiphyllous leafy liverworts. Ecology and Evolution, 2017, 7, 638-653.	0.8	37
42	Multiple Geographical Origins of Environmental Sex Determination enhanced the diversification of Darwin's Favourite Orchids. Scientific Reports, 2017, 7, 12878.	1.6	20
43	The ancestral flower of angiosperms and its early diversification. Nature Communications, 2017, 8, 16047.	5.8	259
44	Andean Mountain Building Did not Preclude Dispersal of Lowland Epiphytic Orchids in the Neotropics. Scientific Reports, 2017, 7, 4919.	1.6	35
45	Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. Annals of Botany, 2017, 120, 855-891.	1.4	53
46	Chromosome numbers, Sudanese wild forms, and classification of the watermelon genus <i>Citrullus </i> , with 50 names allocated to seven biological species. Taxon, 2017, 66, 1393-1405.	0.4	40
47	A Burmese amber fossil of <i>Radula</i> (Porellales, Jungermanniopsida) provides insights into the Cretaceous evolution of epiphytic lineages of leafy liverworts. Fossil Record, 2017, 20, 201-213.	0.5	18
48	Partner choice through concealed floral sugar rewards evolved with the specialization of ant–plant mutualisms. New Phytologist, 2016, 211, 1358-1370.	3.5	29
49	A phylogeny of Cephaloziaceae (Jungermanniopsida) based on nuclear and chloroplast DNA markers. Organisms Diversity and Evolution, 2016, 16, 727-742.	0.7	18
50	Obligate plant farming by a specialized ant. Nature Plants, 2016, 2, 16181.	4.7	26
51	Sex and the Catasetinae (Darwin's favourite orchids). Molecular Phylogenetics and Evolution, 2016, 97, 1-10.	1.2	19
52	Rumbling Orchids: How To Assess Divergent Evolution Between Chloroplast Endosymbionts and the Nuclear Host. Systematic Biology, 2016, 65, 51-65.	2.7	65
53	Evolutionary Relationships and Biogeography of the Ant-Epiphytic Genus Squamellaria (Rubiaceae:) Tj ETQq $1\ 1\ 0$.784314 r 1.1	gBT/Overlo <mark>c</mark> k
54	Strong biogeographic signal in the phylogenetic relationships of Rochefortia Sw. (Ehretiaceae,) Tj ETQq0 0 0 rgB	T /8verloc	k 10 Tf 50 62

#	Article	IF	CITATIONS
55	Phylogenetics and molecular clocks reveal the repeated evolution of antâ€plants after the late <scp>M</scp> iocene in <scp>A</scp> frica and the early <scp>M</scp> iocene in <scp>A</scp> ustralasia and the <scp>N</scp> eotropics. New Phytologist, 2015, 207, 411-424.	3.5	76
56	Macroevolutionary assembly of ant/plant symbioses: <i>Pseudomyrmex</i> ants and their ant-housing plants in the Neotropics. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152200.	1.2	51
57	The velamen protects photosynthetic orchid roots against <scp>UV</scp> â€ <scp>B</scp> damage, and a large dated phylogeny implies multiple gains and losses of this function during the <scp>C</scp> enozoic. New Phytologist, 2015, 205, 1330-1341.	3.5	90
58	Watermelon origin solved with molecular phylogenetics including <scp>L</scp> innaean material: another example of museomics. New Phytologist, 2015, 205, 526-532.	3.5	154
59	A New Species of <i>Lepanthes</i> (Pleurothallidinae, Orchidaceae) from Colombia. Systematic Botany, 2013, 38, 316-319.	0.2	4
60	Analysis of rhizome morphology of the Zingiberales in Payamino (Ecuador) reveals convergent evolution of two distinct architectural strategies. Acta Botanica Gallica, 2013, 160, 239-254.	0.9	12
61	Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation. Frontiers in Plant Science, 0, 13, .	1.7	9