Lisa H Nowell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/199597/publications.pdf Version: 2024-02-01

LISA H NOWELL

#	Article	IF	CITATIONS
1	New-generation pesticides are prevalent in California's Central Coast streams. Science of the Total Environment, 2022, 806, 150683.	8.0	12
2	Ecological consequences of neonicotinoid mixtures in streams. Science Advances, 2022, 8, eabj8182.	10.3	21
3	Pesticides and Pesticide Degradates in Groundwater Used for Public Supply across the United States: Occurrence and Human-Health Context. Environmental Science & Technology, 2021, 55, 362-372.	10.0	76
4	Inclusion of Pesticide Transformation Products Is Key to Estimating Pesticide Exposures and Effects in Small U.S. Streams. Environmental Science & Technology, 2021, 55, 4740-4752.	10.0	45
5	Multi-region assessment of chemical mixture exposures and predicted cumulative effects in USA wadeable urban/agriculture-gradient streams. Science of the Total Environment, 2021, 773, 145062.	8.0	20
6	Is there an urban pesticide signature? Urban streams in five U.S. regions share common dissolved-phase pesticides but differ in predicted aquatic toxicity. Science of the Total Environment, 2021, 793, 148453.	8.0	17
7	Multiple in-stream stressors degrade biological assemblages in five U.S. regions. Science of the Total Environment, 2021, 800, 149350.	8.0	14
8	Common insecticide disrupts aquatic communities: A mesocosm-to-field ecological risk assessment of fipronil and its degradates in U.S. streams. Science Advances, 2020, 6, .	10.3	38
9	Legacy and Currentâ€Use Contaminants in Sediments Alter Macroinvertebrate Communities in Southeastern US Streams. Environmental Toxicology and Chemistry, 2020, 39, 1219-1232.	4.3	9
10	Daily stream samples reveal highly complex pesticide occurrence and potential toxicity to aquatic life. Science of the Total Environment, 2020, 715, 136795.	8.0	32
11	Biofilms Provide New Insight into Pesticide Occurrence in Streams and Links to Aquatic Ecological Communities. Environmental Science & Technology, 2020, 54, 5509-5519.	10.0	34
12	Survey of bioaccessible pyrethroid insecticides and sediment toxicity in urban streams of the northeast United States. Environmental Pollution, 2019, 254, 112931.	7.5	23
13	Effects of urban multi-stressors on three stream biotic assemblages. Science of the Total Environment, 2019, 660, 1472-1485.	8.0	38
14	Mixed-chemical exposure and predicted effects potential in wadeable southeastern USA streams. Science of the Total Environment, 2019, 655, 70-83.	8.0	40
15	Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams. Science of the Total Environment, 2018, 613-614, 1469-1488.	8.0	116
16	Effect of sample holding time on bioaccessibility and sediment ecotoxicological assessments. Environmental Pollution, 2018, 242, 2078-2087.	7.5	9
17	Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA. Science of the Total Environment, 2017, 599-600, 1469-1478.	8.0	42
18	Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers. Environmental Pollution, 2017, 220, 431-440.	7.5	81

LISA H NOWELL

#	Article	IF	CITATIONS
19	Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small Midwestern streams (USA) during the 2013 growing season. Science of the Total Environment, 2017, 579, 149-158.	8.0	92
20	Prediction of Pesticide Toxicity in Midwest Streams. Journal of Environmental Quality, 2016, 45, 1856-1864.	2.0	10
21	Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides. Science of the Total Environment, 2016, 550, 835-850.	8.0	50
22	Pesticide Toxicity Index—A tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Science of the Total Environment, 2014, 476-477, 144-157.	8.0	96
23	Contaminants in Stream Sediments From Seven United States Metropolitan Areas: Part I: Distribution in Relation to Urbanization. Archives of Environmental Contamination and Toxicology, 2013, 64, 32-51.	4.1	47
24	Contaminants in Stream Sediments From Seven United States Metropolitan Areas: Part Il—Sediment Toxicity to the Amphipod Hyalella azteca and the Midge Chironomus dilutus. Archives of Environmental Contamination and Toxicology, 2013, 64, 52-64.	4.1	32
25	Occurrence and Potential Sources of Pyrethroid Insecticides in Stream Sediments from Seven U.S. Metropolitan Areas. Environmental Science & Technology, 2012, 46, 4297-4303.	10.0	163
26	Regression models for explaining and predicting concentrations of organochlorine pesticides in fish from streams in the United States. Environmental Toxicology and Chemistry, 2009, 28, 1346-1358.	4.3	11
27	Comparison of pesticide concentrations in streams at low flow in six metropolitan areas of the United States. Environmental Toxicology and Chemistry, 2008, 27, 288-298.	4.3	49