Matthew A Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extension of the electrolyte <scp>Trebble–Bishnoi EOS</scp> to mixedâ€salt systems, and application to vapour liquid and solid (hydrate) vapour liquid equilibrium calculations. Canadian Journal of Chemical Engineering, 2023, 101, 606-622.	1.7	3
2	Cannabis as a Feedstock for the Production of Chemicals, Fuels, and Materials: A Review of Relevant Studies To Date. Energy & Fuels, 2021, 35, 5538-5557.	5.1	8
3	Hydrate Phase Transition Kinetic Modeling for Nature and Industry–Where Are We and Where Do We Go?. Energies, 2021, 14, 4149.	3.1	10
4	Hydrotreating of Hydrofactionâ,,¢ biocrude in the presence of presulfided commercial catalysts. Sustainable Energy and Fuels, 2019, 3, 744-759.	4.9	22
5	Sensitivity Analysis of Parameters Governing the Recovery of Methane from Natural Gas Hydrate Reservoirs. Energies, 2014, 7, 2148-2176.	3.1	15
6	A short note on the use of an equation of state (EOS) based approach to modelling the thermodynamics of biodiesel systems. Fuel Processing Technology, 2014, 121, 70-75.	7.2	3
7	Investigation of the Variation of the Surface Area of Gas Hydrates during Dissociation by Depressurization in Porous Media. Energy & Fuels, 2013, 27, 5757-5769.	5.1	24
8	Stoichiometric Approach toward Modeling the Decomposition Kinetics of Gas Hydrates Formed from Mixed Gases. Energy & Fuels, 2013, 27, 4534-4544.	5.1	14
9	A Simplified Approach to Modeling the Rate of Formation of Gas Hydrates Formed from Mixtures of Gases. Energy & Fuels, 2013, 27, 1204-1211.	5.1	17
10	Experimental Investigation of Methane Hydrates Equilibrium Condition in the Presence of KNO ₃ , MgSO ₄ , and CuSO ₄ . Journal of Chemical & Engineering Data, 2010, 55, 262-266.	1.9	17
11	Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition. Canadian Journal of Chemical Engineering, 2001, 79, 143-147.	1.7	223
12	Determination of the Intrinsic Rate of Gas Hydrate Decomposition Using Particle Size Analysis. Annals of the New York Academy of Sciences, 2000, 912, 556-563.	3.8	17
13	A Method To Predict Equilibrium Conditions of Gas Hydrate Formation in Porous Media. Industrial & Engineering Chemistry Research, 1999, 38, 2485-2490.	3.7	125