
Yonggui Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995844/publications.pdf Version: 2024-02-01

Υσης συμ Υμμα

#	Article	IF	CITATIONS
1	Full Evaluation of Polarization Characteristics of Multifunctional Integrated Optic Chip With High Accuracy. Journal of Lightwave Technology, 2014, 32, 4243-4252.	4.6	18
2	Large Dynamic Range and High Sensitivity PGC Demodulation Technique for Tri-Component Fiber Optic Seismometer. IEEE Access, 2020, 8, 15085-15092.	4.2	18
3	Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer. Optics Express, 2016, 24, 16247.	3.4	17
4	Distributed Measurement of Polarization Characteristics for a Multifunctional Integrated Optical Chip: A Review. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1543-1553.	4.7	15
5	Tunable optical-path correlator for distributed strain or temperature-sensing application. Optics Letters, 2010, 35, 3357.	3.3	14
6	Distributed Polarization Measurement for Fiber Sensing Coils: A Review. Journal of Lightwave Technology, 2021, 39, 3699-3710.	4.6	13
7	Review of Optical Fiber Sensor Network Technology Based on White Light Interferometry. Photonic Sensors, 2021, 11, 31-44.	5.0	12
8	Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra-simple dual-channel configuration. Photonics Research, 2015, 3, 115.	7.0	10
9	In-fiber integrated quasi-distributed high temperature sensor array. Optics Express, 2018, 26, 34113.	3.4	10
10	Reliability Demodulation Algorithm Design for Phase Generated Carrier Signal. IEEE Transactions on Reliability, 2022, 71, 127-138.	4.6	10
11	Functionalised liquid crystal microfibers for hydrogen peroxide and catalase detection using whispering gallery mode. Liquid Crystals, 2020, 47, 1708-1717.	2.2	9
12	Self-Calibrated Absolute Thickness Measurement of Opaque Specimen Based on Differential White Light Interferometry. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 2507-2514.	4.7	8
13	Range extension of the optical delay line in white light interferometry. Applied Optics, 2017, 56, 4598.	2.1	7
14	High-resolution distributed polarization crosstalk measurement for polarization maintaining fiber with considerable dispersion. Optics Express, 2018, 26, 29712.	3.4	7
15	In-Fiber Integrated Sensor Array With Embedded Weakly Reflective Joint Surface. Journal of Lightwave Technology, 2018, 36, 5663-5668.	4.6	6
16	High Accuracy Distributed Polarization Extinction Ratio Measurement For a Polarization-Maintaining Device With Strong Polarization Crosstalk. Journal of Lightwave Technology, 2021, 39, 2177-2186.	4.6	6
17	Photothermal control of whispering gallery mode lasing in polymer-coated silica microcavity using high-efficiency nanoheater. Journal of Materials Science, 2021, 56, 570-580.	3.7	6
18	Simultaneous Measurement of Strain and Temperature Based on Dual Cross-Axis Interference Polarization-Maintaining Fiber Interferometer. Journal of Lightwave Technology, 2022, 40, 4878-4885.	4.6	6

Yonggui Yuan

#	Article	IF	CITATIONS
19	High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization—Maintaining Fiber and Its Identification. Sensors, 2016, 16, 419.	3.8	5
20	Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system. Applied Optics, 2017, 56, 5614.	1.8	5
21	High-Resolution Distributed Dispersion Characterization for Polarization Maintaining Fibers Based on a Closed-Loop Measurement Framework. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	5
22	Suppression of interference noise caused by Fresnel reflection in all-fiber white-light interferometer. Applied Optics, 2017, 56, 8732.	1.8	5
23	A Calibration Method for Large Dynamic Range White Light Interferometry Using High-Order Polarization Crosstalk. Journal of Lightwave Technology, 2018, , 1-1.	4.6	5
24	Thin-film Thickness Absolute Measurement by Differential Optic-fiber White Light Interferometry. , 2019, , .		2
25	A Novel Multiplexed Fiber Optic Deformation Sensing Scheme. Sensor Letters, 2012, 10, 1526-1528.	0.4	2
26	A Distributed Bonding Interfacial Loss Characterizing Method of Composite Crystal Based on Optical Low-Coherence Domain Reflectometry. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-7.	4.7	2
27	In-Fiber Integrated Quasi-Distributed Temperature Sensor Array With High Spatial Resolution for Silicon Nitride Igniter. IEEE Sensors Journal, 2022, 22, 9426-9432.	4.7	2
28	Design, transform and control of optical field in discrete optical system: an example. Scientific Reports, 2017, 7, 5171.	3.3	1
29	Distributed Polarization Characteristic Testing for Optical Closed Loop of Sagnac Interferometer. Journal of Lightwave Technology, 2022, 40, 2548-2555.	4.6	1
30	Metrological Traceability of High Polarization Extinction Ratio (PER) Based on Precision Coaxial Rotating Polarization-Maintaining Fiber. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	1
31	High-Accuracy PER Measurement of Integrated Optic Chip Using Orthogonal Alignment Method. IEEE Photonics Technology Letters, 2018, 30, 732-735.	2.5	0