Jianjun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995717/publications.pdf Version: 2024-02-01

LIANUUN LI

#	Article	IF	CITATIONS
1	In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5955.	10.3	125
2	Analysis of the synthesis process of sulphur–poly(acrylonitrile)-based cathode materials for lithium batteries. Journal of Materials Chemistry, 2012, 22, 22077.	6.7	84
3	AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries. Ionics, 2011, 17, 671-675.	2.4	77
4	Nanocomposite polymer membrane derived from nano TiO ₂ -PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. Journal of Materials Chemistry A, 2015, 3, 17697-17703.	10.3	49
5	Organic polymer material with a multi-electron process redox reaction: towards ultra-high reversible lithium storage capacity. RSC Advances, 2013, 3, 3227.	3.6	35
6	Effect of slurry preparation and dispersion on electrochemical performances of LiFePO4 composite electrode. Ionics, 2011, 17, 473-477.	2.4	34
7	Urea-assisted solvothermal synthesis of monodisperse multiporous hierarchical micro/nanostructured ZnCo2O4 microspheres and their lithium storage properties. Ionics, 2015, 21, 2743-2754.	2.4	18
8	Nano-Crystalline Li1.2Mn0.6Ni0.2O2 Prepared via Amorphous Complex Precursor and Its Electrochemical Performances as Cathode Material for Lithium-Ion Batteries. Materials, 2016, 9, 661.	2.9	18
9	Interfacial bonding enhancement of the RTV recoating with sandwiched contaminant by plasma jet. High Voltage, 2019, 4, 345-348.	4.7	12
10	The electrochemical characteristics of sulfur composite cathode. Ionics, 2010, 16, 689-695.	2.4	11
11	Charge rate influence on the electrochemical performance of LiFePO4 electrode with redox shuttle additive in electrolyte. Ionics, 2012, 18, 501-505.	2.4	10
12	Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery. Ionics, 2014, 20, 301-307.	2.4	10
13	Interaction between plasma jet and silicone rubber covered by porous inorganic contaminants: Surface hydrophobicity or hydrophilicity?. High Voltage, 0, , .	4.7	7
14	One-Step Synthesis of Single-Wall Carbon Nanotube-ZnS Core-Shell Nanocables. Materials, 2016, 9, 718.	2.9	3
15	Penetration of plasma jet into porous dielectric layer: confirmed by surface charge dissipation of silicone rubber. Journal Physics D: Applied Physics, 2022, 55, 215202.	2.8	3
16	Study on the Technology of Monodisperse Droplets by a High-Throughput and Instant-Mixing Droplet Microfluidic System. Materials, 2021, 14, 1263.	2.9	2
17	Hydrophobicity Improvement of Polluted Silicone Rubber by Plasma Jet in High Humidity Environment. , 2021, , .		2
18	An improvement of microfluidic assisted internal gelation in the preparation of millimeterâ€sized ceramic microspheres. Journal of the American Ceramic Society, 0, , .	3.8	2

#	Article	IF	CITATIONS
19	Hydrophobicity changes of polluted silicone rubber introduced by spatial and dose distribution of plasma jet. Plasma Science and Technology, 2022, 24, 044006.	1.5	1