Esther Perez-Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995702/publications.pdf

Version: 2024-02-01

77 papers 2,910 citations

33 h-index 51 g-index

79 all docs

79 docs citations

79 times ranked 3594 citing authors

#	Article	IF	CITATIONS
1	RTP801/REDD1 Is Involved in Neuroinflammation and Modulates Cognitive Dysfunction in Huntington's Disease. Biomolecules, 2022, 12, 34.	4.0	2
2	Huntington's disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathologica, 2021, 141, 565-584.	7.7	12
3	Lack of Annexin A6 Exacerbates Liver Dysfunction and Reduces Lifespan of Niemann-Pick Type C Protein–Deficient Mice. American Journal of Pathology, 2021, 191, 475-486.	3.8	3
4	Isoform-Specific Reduction of the Basic Helix-Loop-Helix Transcription Factor TCF4 Levels in Huntington's Disease. ENeuro, 2021, 8, ENEURO.0197-21.2021.	1.9	2
5	Neuron typeâ€specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Molecular Medicine, 2021, 13, e12105.	6.9	28
6	Synaptic RTP801 contributes to motor-learning dysfunction in Huntington's disease. Cell Death and Disease, 2020, 11, 569.	6.3	10
7	Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning. Molecular Neurobiology, 2019, 56, 1475-1487.	4.0	11
8	Increased translation as a novel pathogenic mechanism in Huntington's disease. Brain, 2019, 142, 3158-3175.	7.6	43
9	Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration. Molecular Neurobiology, 2018, 55, 7728-7742.	4.0	12
10	Huntington's disease: novel therapeutic perspectives hanging in the balance. Expert Opinion on Therapeutic Targets, 2018, 22, 385-399.	3.4	10
11	Age-related changes in STriatal-Enriched protein tyrosine Phosphatase levels: Regulation by BDNF. Molecular and Cellular Neurosciences, 2018, 86, 41-49.	2.2	9
12	Pharmacogenetic modulation of STEP improves motor and cognitive function in a mouse model of Huntington's disease. Neurobiology of Disease, 2018, 120, 88-97.	4.4	12
13	Social Memory and Social Patterns Alterations in the Absence of STriatal-Enriched Protein Tyrosine Phosphatase. Frontiers in Behavioral Neuroscience, 2018, 12, 317.	2.0	11
14	Chelerythrine promotes Ca2+-dependent calpain activation in neuronal cells in a PKC-independent manner. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 922-935.	2.4	11
15	The AMPA receptor positive allosteric modulator S 47445 rescues inÂvivo CA3-CA1 long-term potentiation and structural synaptic changes in old mice. Neuropharmacology, 2017, 123, 395-409.	4.1	22
16	Caffeineâ€mediated BDNF release regulates longâ€ŧerm synaptic plasticity through activation of IRS2 signaling. Addiction Biology, 2017, 22, 1706-1718.	2.6	24
17	Downâ€regulation of <scp>BDNF</scp> in cell and animal models increases striatalâ€enriched protein tyrosine phosphatase 61 (<scp>STEP</scp> ₆₁) levels. Journal of Neurochemistry, 2016, 136, 285-294.	3.9	14
18	Cognitive dysfunction in <scp>H</scp> untington's disease: mechanisms and therapeutic strategies beyond <scp>BDNF</scp> . Brain Pathology, 2016, 26, 752-771.	4.1	26

#	Article	IF	CITATIONS
19	Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease. American Journal of Pathology, 2016, 186, 517-523.	3.8	9
20	Striatal-enriched protein tyrosine phosphatase modulates nociception. Pain, 2016, 157, 377-386.	4.2	17
21	BDNF Induces Striatal-Enriched Protein Tyrosine Phosphatase 61 Degradation Through the Proteasome. Molecular Neurobiology, 2016, 53, 4261-4273.	4.0	22
22	RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death. Molecular Neurobiology, 2016, 53, 2857-2868.	4.0	19
23	Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels. Journal of Clinical Investigation, 2016, 126, 4319-4330.	8.2	59
24	Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease. Human Molecular Genetics, 2015, 24, 5040-5052.	2.9	33
25	Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease. Neurobiology of Disease, 2015, 74, 41-57.	4.4	40
26	Early Down-Regulation of PKCδas a Pro-Survival Mechanism in Huntington's Disease. NeuroMolecular Medicine, 2014, 16, 25-37.	3.4	17
27	Sustained Increase of PKA Activity in the Postcommissural Putamen of Dyskinetic Monkeys. Molecular Neurobiology, 2014, 50, 1131-1141.	4.0	3
28	Buspirone anti-dyskinetic effect is correlated with temporal normalization of dysregulated striatal DRD1 signalling in I-DOPA-treated rats. Neuropharmacology, 2014, 79, 726-737.	4.1	24
29	Increased 5-Methylcytosine and Decreased 5-Hydroxymethylcytosine Levels are Associated with Reduced Striatal A2AR Levels in Huntington's Disease. NeuroMolecular Medicine, 2013, 15, 295-309.	3.4	129
30	Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington's disease. Neurobiology of Disease, 2013, 52, 219-228.	4.4	44
31	PDE10 inhibition increases GluA1 and CREB phosphorylation and improves spatial and recognition memories in a Huntington's disease mouse model. Hippocampus, 2013, 23, 684-695.	1.9	70
32	Reciprocal Negative Cross-Talk between Liver X Receptors (LXRs) and STAT1: Effects on IFN-γ–Induced Inflammatory Responses and LXR-Dependent Gene Expression. Journal of Immunology, 2013, 190, 6520-6532.	0.8	44
33	Regulation of Hippocampal cGMP Levels as a Candidate to Treat Cognitive Deficits in Huntington's Disease. PLoS ONE, 2013, 8, e73664.	2.5	53
34	Activation of Elkâ€1 participates as a neuroprotective compensatory mechanism in models of Huntington's disease. Journal of Neurochemistry, 2012, 121, 639-648.	3.9	27
35	Cognitive Dysfunction in Huntington's Disease: Humans, Mouse Models and Molecular Mechanisms. Journal of Huntington's Disease, 2012, 1, 155-173.	1.9	57
36	Striatal-Enriched Protein Tyrosine Phosphatase Expression and Activity in Huntington's Disease: A STEP in the Resistance to Excitotoxicity. Journal of Neuroscience, 2011, 31, 8150-8162.	3.6	63

#	Article	IF	Citations
37	Caveolin-1 Deficiency Causes Cholesterol-Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility. Current Biology, 2011, 21, 681-686.	3.9	175
38	Increased 90-kDa ribosomal S6 kinase (Rsk) activity is protective against mutant huntingtin toxicity. Molecular Neurodegeneration, 2011, 6, 74.	10.8	16
39	Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington's disease. Human Molecular Genetics, 2011, 20, 4232-4247.	2.9	99
40	Bax and Calpain Mediate Excitotoxic Oligodendrocyte Death Induced by Activation of Both AMPA and Kainate Receptors. Journal of Neuroscience, 2011, 31, 2996-3006.	3.6	55
41	PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum. Cell Death and Differentiation, 2010, 17, 324-335.	11.2	49
42	Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington's disease: Role in excitotoxicity. Neurobiology of Disease, 2009, 36, 461-469.	4.4	36
43	Brain-derived neurotrophic factor (BDNF) mediates bone morphogenetic protein-2 (BMP-2) effects on cultured striatal neurones. Journal of Neurochemistry, 2008, 79, 747-755.	3.9	38
44	Calcineurin is involved in the early activation of NMDAâ€mediated cell death in mutant huntingtin knockâ€in striatal cells. Journal of Neurochemistry, 2008, 105, 1596-1612.	3.9	52
45	Bax deficiency promotes an up-regulation of BimEL and Bak during striatal and cortical postnatal development, and after excitotoxic injury. Molecular and Cellular Neurosciences, 2008, 37, 663-672.	2.2	7
46	Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-d-aspartate receptors. Neuroscience, 2007, 144, 462-471.	2.3	15
47	BH3-only proteins Bid and BimEL are differentially involved in neuronal dysfunction in mouse models of Huntington's disease. Journal of Neuroscience Research, 2007, 85, 2756-2769.	2.9	30
48	Glial cell line-derived neurotrophic factor promotes the arborization of cultured striatal neurons through the p42/p44 mitogen-activated protein kinase pathway. Journal of Neuroscience Research, 2006, 83, 68-79.	2.9	19
49	Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. Journal of Neurochemistry, 2005, 92, 678-691.	3.9	57
50	Differential involvement of phosphatidylinositol 3-kinase and p42/p44 mitogen activated protein kinase pathways in brain-derived neurotrophic factor-induced trophic effects on cultured striatal neurons. Molecular and Cellular Neurosciences, 2004, 25, 460-468.	2.2	31
51	Neurotrophic factors in Huntington's disease. Progress in Brain Research, 2004, 146, 197-229.	1.4	67
52	Therapeutic strategies in Huntington's disease. Expert Opinion on Therapeutic Patents, 2003, 13, 449-465.	5.0	3
53	Excitatory Amino Acids Differentially Regulate the Expression of GDNF, Neurturin, and Their Receptors in the Adult Rat Striatum. Experimental Neurology, 2002, 174, 243-252.	4.1	48
54	Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease. Brain Research Bulletin, 2002, 57, 817-822.	3.0	108

#	Article	IF	CITATIONS
55	Striatopallidal neurons are selectively protected by neurturin in an excitotoxic model of Huntington's disease. Journal of Neurobiology, 2002, 50, 323-332.	3.6	12
56	Regulation of c-Ret, $GFR\hat{l}\pm 1$, and $GFR\hat{l}\pm 2$ in the substantia nigraPars compactain a rat model of Parkinson's disease. Journal of Neurobiology, 2002, 52, 343-351.	3.6	34
57	Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4/5 Prevent the Death of Striatal Projection Neurons in a Rodent Model of Huntington's Disease. Journal of Neurochemistry, 2002, 75, 2190-2199.	3.9	173
58	Expression of Brain-Derived Neurotrophic Factor in Cortical Neurons Is Regulated by Striatal Target Area. Journal of Neuroscience, 2001, 21, 117-124.	3.6	97
59	Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members. Journal of Neurochemistry, 2001, 78, 1287-1296.	3.9	78
60	Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington's disease. Neuroscience, 2000, 98, 89-96.	2.3	51
61	Intrastriatal grafting of a GDNF-producing cell line protects striatonigral neurons from quinolinic acid excitotoxicityinâ€∫vivo. European Journal of Neuroscience, 1999, 11, 241-249.	2.6	52
62	Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 differentially regulate the phenotype and prevent degenerative changes in striatal projection neurons after excitotoxicity in vivo. Neuroscience, 1999, 91, 1257-1264.	2.3	63
63	The neurotrophin receptors trkA, trkB and trkC are differentially regulated after excitotoxic lesion in rat striatum. Molecular Brain Research, 1999, 69, 242-248.	2.3	34
64	Differential Regulation of the Expression of Nerve Growth Factor, Brain-Derived Neurotrophic Factor, and Neurotrophin-3 after Excitotoxicity in a Rat Model of Huntington's Disease. Neurobiology of Disease, 1998, 5, 357-364.	4.4	43
65	A BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) RELATED SYSTEM IS INVOLVED IN THE MAINTENANCE OF THE POLYINNERVATE TORPEDO ELECTRIC ORGAN. Neurochemistry International, 1997, 31, 33-38.	3.8	2
66	Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. Neuroscience, 1996, 75, 345-352.	2.3	83
67	Unilateral Neonatal Hippocampal Lesion Alters Septal Innervation and Trophism of the Entorhinal Cortex. Experimental Neurology, 1996, 141, 130-140.	4.1	14
68	Tachykinins protect cholinergic neurons from quinolinic acid excitotoxicity in striatal cultures. Brain Research, 1996, 740, 323-328.	2.2	38
69	Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins. Acta Neuropathologica, 1995, 90, 504-510.	7.7	82
70	Protective Role of Nerve Growth Factor against Excitatory Amino Acid Injury during Neostriatal Cholinergic Neurons Postnatal Development. Experimental Neurology, 1995, 135, 146-152.	4.1	14
71	Nerve Growth Factor and Basic Fibroblast Growth Factor Protect Cholinergic Neurons Against Quinolinic Acid Excitotoxicity in Rat Neostriatum. European Journal of Neuroscience, 1994, 6, 706-711.	2.6	28
72	Control of tachykinin-evoked acetylcholine release from rat striatal slices by dopaminergic neurons. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 445-9.	3.0	3

#	Article	IF	CITATION
73	Selective resistance of tachykinin-responsive cholinergic neurons in the quinolinic acid lesioned neostriatum. Brain Research, 1993, 603, 317-320.	2.2	14
74	Nerve growth factor and its receptor are differentially modified by chronic naltrexone treatment during rat brain development. Neuroscience Letters, 1993, 149, 47-50.	2.1	11
75	Postnatal development of functional dopamine, opioid and tachykinin receptors that regulate acetylcholine release from rat neostriatal slices. Effect of 6â€hydroxydopamine lesion. International Journal of Developmental Neuroscience, 1993, 11, 701-708.	1.6	21
76	Neostriatal dopaminergic terminals prevent the GABAergic involvement in the $\hat{1}\frac{1}{4}$ - and $\hat{1}$ -opioid inhibition of KCl-evoked endogenous acetylcholine release. Brain Research, 1991, 556, 349-352.	2.2	4
77	Involvement of Nerve Growth Factor and Its Receptor in the Regulation of the Cholinergic Function in Aged Rats. Journal of Neurochemistry, 1991, 57, 1483-1487.	3.9	62