Yosuke Iimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/199563/publications.pdf Version: 2024-02-01

YOSUKE LIMURA

#	Article	IF	CITATIONS
1	Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Applied Microbiology and Biotechnology, 2005, 67, 138-142.	1.7	76
2	N-linked carbohydrate chains protect laccase III from proteolysis in Coriolus versicolor. Journal of General Microbiology, 1993, 139, 179-185.	2.3	56
3	Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Science of the Total Environment, 2009, 407, 5805-5810.	3.9	52
4	Dechlorination of tetrachloroguaiacol by laccase of white-rot basidiomycete Coriolus versicolor. Applied Microbiology and Biotechnology, 1996, 45, 434-439.	1.7	48
5	Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Applied Microbiology and Biotechnology, 2002, 59, 246-251.	1.7	47
6	Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1138-1145.	0.9	37
7	Heterologous expression of Trametes versicolor laccase in Saccharomyces cerevisiae. Protein Expression and Purification, 2018, 141, 39-43.	0.6	30
8	Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor. Applied Microbiology and Biotechnology, 2004, 66, 194-199.	1.7	25
9	Influence of compost amendment on pyrene availability from artificially spiked soil to two subspecies of Cucurbita pepo. Science of the Total Environment, 2008, 404, 1-9.	3.9	25
10	Isolation of mRNAs induced by a hazardous chemical in white-rot fungus,Coriolus versicolor, by differential display. FEBS Letters, 1997, 412, 370-374.	1.3	24
11	Treatment of PAHs in contaminated soil by extraction with aqueous DNA followed by biodegradation with a pure culture of Sphingomonas sp Chemosphere, 2008, 73, 1414-1419.	4.2	23
12	Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Soil by Aqueous DNA Solution. Environmental Science & Technology, 2007, 41, 4240-4245.	4.6	22
13	Hybrid aspen with a transgene for fungal manganese peroxidase is a potential contributor to phytoremediation of the environment contaminated with bisphenol A. Journal of Wood Science, 2007, 53, 541-544.	0.9	18
14	Degradation and Solubilization of ¹³ C_, ¹⁴ C-side Chain Labeled Synthetic Lignin (Dehydrogenative Polymerizate) by Laccase III of <i>Coriolus versicolor</i> . Bioscience, Biotechnology and Biochemistry, 1995, 59, 903-905.	0.6	16
15	Specific degradation ofβ-aryl ether linkage in synthetic lignin (dehydrogenative polymerizate) by bacterial enzymes ofSphingomonas paucimobilis SYK-6 produced in recombinantEscherichia coli. Journal of Wood Science, 2002, 48, 429-433.	0.9	16
16	Application of fungal laccase fused with cellulose-binding domain to develop low-lignin rice plants. Journal of Bioscience and Bioengineering, 2013, 116, 616-619.	1.1	14
17	Molecular cloning of the promoter region of the glyceraldehyde-3-phosphate dehydrogenase gene that contributes to the construction of a new transformation system in Coriolus versicolor. Mycoscience, 2004, 45, 131-136.	0.3	9
18	Bacterial Community Coexisting with White-Rot Fungi in Decayed Wood in Nature. Current Microbiology, 2021, 78, 3212-3217.	1.0	8

Yosuke limura

#	Article	IF	CITATIONS
19	Overexpression of a fungal laccase gene induces nondehiscent anthers and morphological changes in flowers of transgenic tobacco. Journal of Wood Science, 2010, 56, 460-469.	0.9	6
20	Expression of a fungal laccase fused with a bacterial cellulose-binding module improves the enzymatic saccharification efficiency of lignocellulose biomass in transgenic Arabidopsis thaliana. Transgenic Research, 2017, 26, 753-761.	1.3	5
21	Generation of transgenic hybrid aspen that express a bacterial gene for feruloyl-CoA hydratase/lyase (FerB), which is involved in lignin degradation in Sphingomonas paucimobilis SYK-6. Journal of Wood Science, 2004, 50, 275-280.	0.9	4
22	Structure of Genes for Hsp30 from the White-rot fungusCoriolus versicolorand the Increase of their Expression by Heat Shock and Exposure to a Hazardous Chemical. Bioscience, Biotechnology and Biochemistry, 2002, 66, 1567-1570.	0.6	3
23	Nature of bioavailability of DNA-intercalated polycyclic aromatic hydrocarbons to Sphingomonas sp Chemosphere, 2010, 80, 866-871.	4.2	3
24	Phytoremediation of Bis-Phenol A via Secretory Fungal Peroxidases Produced by Transgenic Plants. , 2012, , .		3
25	<i>In vitro</i> regeneration and <i>Agrobacterium</i> -mediated transformation of male- sterile marigold (<i>Tagetes erecta</i> L.). Plant Biotechnology, 2017, 34, 125-129.	0.5	2
26	Identification and characterization of levulinyl-CoA synthetase from Pseudomonas citronellolis, which differs phylogenetically from LvaE of Pseudomonas putida. AMB Express, 2019, 9, 127.	1.4	1