
James J Bonaiuto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995579/publications.pdf Version: 2024-02-01

IAMES I RONALUTO

#	Article	IF	CITATIONS
1	Detection and analysis of cortical beta bursts in developmental EEG data. Developmental Cognitive Neuroscience, 2022, 54, 101069.	1.9	15
2	Laminar dynamics of high amplitude beta bursts in human motor cortex. NeuroImage, 2021, 242, 118479.	2.1	45
3	An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces. Frontiers in Neuroscience, 2021, 15, 824759.	1.4	5
4	Estimates of cortical column orientation improve MEG source inversion. Neurolmage, 2020, 216, 116862.	2.1	11
5	Highâ€precision magnetoencephalography for reconstructing amygdalar and hippocampal oscillations during prediction of safety and threat. Human Brain Mapping, 2019, 40, 4114-4129.	1.9	19
6	Human motor cortical beta bursts relate to movement planning and response errors. PLoS Biology, 2019, 17, e3000479.	2.6	134
7	Building blocks of joint attention: Early sensitivity to having one's own gaze followed. Developmental Cognitive Neuroscience, 2019, 37, 100631.	1.9	15
8	Grasping Neurons in the Ventral Premotor Cortex of Macaques Are Modulated by Social Goals. Journal of Cognitive Neuroscience, 2019, 31, 299-313.	1.1	4
9	Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms. NeuroImage, 2018, 167, 372-383.	2.1	47
10	Quantifying the performance of MEG source reconstruction using resting state data. Neurolmage, 2018, 181, 453-460.	2.1	13
11	Lamina-specific cortical dynamics in human visual and sensorimotor cortices. ELife, 2018, 7, .	2.8	45
12	Effects of Infant Cleft Lip on Adult Gaze and Perceptions of "Cuteness― Cleft Palate-Craniofacial Journal, 2017, 54, 562-570.	0.5	22
13	Early maternal mirroring predicts infant motor system activation during facial expression observation. Scientific Reports, 2017, 7, 11738.	1.6	54
14	Flexible head-casts for high spatial precision MEG. Journal of Neuroscience Methods, 2017, 276, 38-45.	1.3	69
15	Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech. Journal of Neurophysiology, 2016, 116, 2023-2032.	0.9	12
16	Selective alteration of human value decisions with medial frontal tDCS is predicted by changes in attractor dynamics. Scientific Reports, 2016, 6, 25160.	1.6	31
17	Mu desynchronization during observation and execution of facial expressions in 30-month-old children. Developmental Cognitive Neuroscience, 2016, 19, 279-287.	1.9	82
18	Response repetition biases in human perceptual decisions are explained by activity decay in competitive attractor models. ELife, 2016, 5, .	2.8	33

James J Bonaiuto

#	Article	IF	CITATIONS
19	Understanding the nonlinear physiological and behavioral effects of tDCS through computational neurostimulation. Progress in Brain Research, 2015, 222, 75-103.	0.9	33
20	A Biologically Plausible Computational Theory for Value Integration and Action Selection in Decisions with Competing Alternatives. PLoS Computational Biology, 2015, 11, e1004104.	1.5	47
21	Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions. Journal of Neuroscience, 2015, 35, 11719-11728.	1.7	39
22	Learning to grasp and extract affordances: the Integrated Learning of Grasps and Affordances (ILGA) model. Biological Cybernetics, 2015, 109, 639-669.	0.6	17
23	Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 2015, 19, 13-20.	4.0	202
24	Associative learning is necessary but not sufficient for mirror neuron development. Behavioral and Brain Sciences, 2014, 37, 194-195.	0.4	1
25	Modeling the BOLD correlates of competitive neural dynamics. Neural Networks, 2014, 49, 1-10.	3.3	10
26	Action and Language Mechanisms in the Brain: Data, Models and Neuroinformatics. Neuroinformatics, 2014, 12, 209-225.	1.5	7
27	Information Processing in the Mirror Neuron System in Primates and Machines. Neuroinformatics, 2014, 12, 63-91.	1.5	23
28	A Neuroinformatics of Brain Modeling and its Implementation in the Brain Operation Database BODB. Neuroinformatics, 2014, 12, 5-26.	1.5	9
29	Affordances and Action Recognition. , 2014, , 25-27.		О
30	Multiple levels of spatial organization: World Graphs and spatial difference learning. Adaptive Behavior, 2012, 20, 287-303.	1.1	9
31	Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biological Cybernetics, 2010, 102, 341-359.	0.6	99
32	Tool use and the distalization of the end-effector. Psychological Research, 2009, 73, 441-462.	1.0	126
33	From grasping to complex imitation: mirror systems on the path to language. Mind and Society, 2008, 7, 43-64.	0.9	10
34	Extending the mirror neuron system model, I. Biological Cybernetics, 2007, 96, 9-38.	0.6	102
35	The use of attention and spatial information for rapid facial recognition in video. Image and Vision Computing, 2006, 24, 557-563.	2.7	14
36	THE MIRROR SYSTEM HYPOTHESIS: FROM A MACAQUE-LIKE MIRROR SYSTEM TO IMITATION. , 2006, , .		6