Liang-Yan Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995442/publications.pdf Version: 2024-02-01

LIANC-YAN HSU

#	Article	IF	CITATIONS
1	Plasmon-Coupled Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2017, 8, 2357-2367.	2.1	136
2	Energyâ€Level Alignment for Singleâ€Molecule Conductance of Extended Metalâ€Atom Chains. Angewandte Chemie - International Edition, 2015, 54, 15734-15738.	7.2	51
3	Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach. Journal of Chemical Physics, 2017, 146, 064109.	1.2	50
4	Conductance of Tailored Molecular Segments: A Rudimentary Assessment by Landauer Formulation. Journal of the American Chemical Society, 2014, 136, 1832-1841.	6.6	41
5	Single-Molecule Phenyl-Acetylene-Macrocycle-Based Optoelectronic Switch Functioning as a Quantum-Interference-Effect Transistor. Physical Review Letters, 2012, 109, 186801.	2.9	38
6	Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2018, 9, 7032-7039.	2.1	33
7	Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. Journal of Physical Chemistry C, 2018, 122, 22650-22659.	1.5	33
8	Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach. Journal of Chemical Physics, 2019, 151, 014105.	1.2	33
9	Entropy-based time-varying window width selection for nonlinear-type time–frequency analysis. International Journal of Data Science and Analytics, 2017, 3, 231-245.	2.4	32
10	Charge Transport Through a Single Molecular Wire Based on Linear Multimetal Complexes: A Non-Equilibrium Green's Function Approach. Journal of Physical Chemistry C, 2008, 112, 10538-10541.	1.5	31
11	An investigation of quantum transport by the free-electron network model: Resonance and interference effects. Chemical Physics, 2009, 355, 177-182.	0.9	30
12	Molecular Series-Tunneling Junctions. Journal of the American Chemical Society, 2015, 137, 5948-5954.	6.6	30
13	Single-Molecule Electric Revolving Door. Nano Letters, 2013, 13, 5020-5025.	4.5	25
14	Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2020, 11, 5948-5955.	2.1	24
15	A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing transform. AIP Advances, 2014, 4, 117138.	0.6	21
16	Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor. Nano Letters, 2018, 18, 5015-5023.	4.5	21
17	Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. Journal of Physical Chemistry C, 2021, 125, 18119-18128.	1.5	21
18	Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2020, 11, 6796-6804.	2.1	19

LIANG-YAN HSU

#	Article	IF	CITATIONS
19	Gate Control of the Conduction Mechanism Transition from Tunneling to Thermally Activated Hopping. Journal of Physical Chemistry Letters, 2014, 5, 1831-1836.	2.1	18
20	Light-driven electron transport through a molecular junction based on cross-conjugated systems. Journal of Chemical Physics, 2014, 141, 124703.	1.2	17
21	Reaction: New Insights into Molecular Electronics. CheM, 2017, 3, 378-379.	5.8	17
22	Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism. Journal of Chemical Physics, 2020, 153, 184102.	1.2	17
23	Transport through a mixed-valence molecular transistor in the sequential-tunneling regime: Theoretical insight from the two-site Peierls–Hubbard model. Journal of Chemical Physics, 2010, 133, 144705.	1.2	15
24	Bandwidth, intensity, and lineshape of the transmission spectrum in the single molecular junction. Chemical Physics Letters, 2008, 457, 279-283.	1.2	13
25	Theory of molecular conductance using a modular approach. Journal of Chemical Physics, 2016, 145, 234702.	1.2	13
26	Conductance and activation energy for electron transport in series and parallel intramolecular circuits. Physical Chemistry Chemical Physics, 2016, 18, 32087-32095.	1.3	12
27	Large-Scale Inhomogeneous Fluorescence Plasmonic Silver Chips: Origin and Mechanism. CheM, 2020, 6, 3396-3408.	5.8	10
28	Quantum transport with electronic relaxation in electrodes: Landauer-type formulas derived from the driven Liouville–von Neumann approach. Journal of Chemical Physics, 2020, 153, 044103.	1.2	10
29	Exploring laser-driven quantum phenomena from a time-frequency analysis perspective: a comprehensive study. Optics Express, 2015, 23, 30459.	1.7	9
30	Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. Journal of Chemical Physics, 2021, 155, 134117.	1.2	9
31	Theory of molecular emission power spectra. II. Angle, frequency, and distance dependence of electromagnetic environment factor of a molecular emitter in plasmonic environments. Journal of Chemical Physics, 2021, 155, 074101.	1.2	8
32	Coherent light-driven electron transport through polycyclic aromatic hydrocarbon: laser frequency, field intensity, and polarization angle dependence. Physical Chemistry Chemical Physics, 2015, 17, 20617-20629.	1.3	6
33	Gate Control of Artificial Single-Molecule Electric Machines. Journal of Physical Chemistry C, 2015, 119, 4573-4579.	1.5	5
34	Electric Current Fluctuations Induced by Molecular Vibrations in the Adiabatic Limit: Molecular Dynamics-Driven Liouville von Neumann Approach. Journal of Physical Chemistry C, 2019, 123, 10746-10755.	1.5	5
35	Photoinduced anomalous Coulomb blockade and the role of triplet states in electron transport through an irradiated molecular transistor. II. Effects of electron-phonon coupling and vibrational relaxation. Journal of Chemical Physics, 2019, 151, 054704.	1.2	3
36	Coherent revival of tunneling. Physical Review B, 2015, 92, .	1.1	2

#	Article	IF	CITATIONS
37	Design of Plasmon Resonance Shifts by the Galvanic Replacement Degree of Au–Ag Nanozappers. Journal of Physical Chemistry C, 2019, 123, 29298-29305.	1.5	1
38	<scp>Vibrationâ€induced</scp> symmetry breaking in hybrid <scp>lightâ€inatter</scp> dimer states. Journal of the Chinese Chemical Society, 0, , .	0.8	1
39	Molecules strongly coupled with plasmon polaritons: a macroscopic quantum electrodynamics approach. , 2021, , .		0