Xiao-ming Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995329/publications.pdf

Version: 2024-02-01

38	759	16	27
papers	citations	h-index	g-index
38	38	38	537 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Friction and wear performance of dual lubrication systems combining WS2–MoS2 composite film and low volatility oils under vacuum condition. Tribology International, 2016, 99, 57-66.	3.0	66
2	Nanostructured WS2–Ni composite films for improved oxidation, resistance and tribological performance. Applied Surface Science, 2014, 288, 15-25.	3.1	55
3	Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties. Surface and Coatings Technology, 2014, 238, 197-206.	2.2	49
4	Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure. Applied Surface Science, 2015, 330, 30-38.	3.1	47
5	Dependence of atomic oxygen resistance and the tribological properties on microstructures of WS2 films. Applied Surface Science, 2014, 298, 36-43.	3.1	42
6	Constructing WS2/MoS2 nano-scale multilayer film and understanding its positive response to space environment. Surface and Coatings Technology, 2018, 353, 8-17.	2.2	40
7	Microstructure Evolution and Enhanced Tribological Properties of Cu-Doped WS2 Films. Tribology Letters, 2014, 55, 1-13.	1.2	34
8	Response of RF-sputtered MoS2 composite films to LEO space environment. Vacuum, 2017, 144, 72-79.	1.6	33
9	MoS2-Au/Au multilayer lubrication film with better resistance to space environment. Journal of Alloys and Compounds, 2020, 815, 152483.	2.8	33
10	The effects of nanoscaled amorphous Si and SiN protective layers on the atomic oxygen resistant and tribological properties of Ag film. Applied Surface Science, 2012, 258, 5683-5688.	3.1	27
11	In-situ friction and wear responses of WS2 films to space environment: Vacuum and atomic oxygen. Applied Surface Science, 2018, 447, 368-373.	3.1	27
12	Improvement of anti-oxidation capability and tribological property of arc ion plated Ag film by alloying with Cu. Applied Surface Science, 2011, 257, 7643-7648.	3.1	25
13	Vacuum Tribological Performance of WS2–MoS2 Composite Film Against Oil-Impregnated Porous Polyimide: Influence of Oil Viscosity. Tribology Letters, 2019, 67, 1.	1.2	25
14	Tribological behavior of WS ₂ -based solid/liquid lubricating systems dominated by the surface properties of WS ₂ crystallographic planes. RSC Advances, 2015, 5, 64892-64901.	1.7	24
15	Modification of structure and wear resistance of closed-field unbalanced-magnetron sputtered MoS2 film by vacuum-heat-treatment. Surface and Coatings Technology, 2020, 401, 126215.	2.2	22
16	Structural, Mechanical, and Tribological Properties of WS2-Al Nanocomposite Film for Space Application. Tribology Letters, 2018, 66, 1.	1.2	18
17	Responses of TMDs-metals composite films to atomic oxygen exposure. Journal of Alloys and Compounds, 2018, 765, 854-861.	2.8	17
18	Changes in the structure and tribological property of Ag film by LEO space environment exposure. Applied Surface Science, 2014, 320, 466-470.	3.1	16

#	Article	IF	Citations
19	Improving the tribological and anti-corrosion property of the WS2 film through Ta doping. Vacuum, 2021, 192, 110485.	1.6	16
20	Boosting hydrogen evolution performance by using a plasma-sputtered porous monolithic W ₂ C@WC _{1â^2x} /Mo film electrocatalyst. Journal of Materials Chemistry A, 2020, 8, 19473-19483.	5.2	15
21	Vertically constructed monolithic electrodes for sodium ion batteries: toward low tortuosity and high energy density. Journal of Materials Chemistry A, 2019, 7, 25985-25992.	5.2	12
22	Tailoring of the interface morphology of WS2/CrN bilayered thin film for enhanced tribological property. Vacuum, 2018, 156, 157-164.	1.6	11
23	Preparation and characterization of the CrN nanocone array textured WS 2 film. Materials Letters, 2017, 188, 267-270.	1.3	10
24	A simple strategy to tailor the microstructure and wear-resistance of sputtered WS 2 films. Materials Letters, 2018, 216, 179-181.	1.3	10
25	Cabbage-like WS2/Ni bilayer thin film for improved tribological property. Surface and Coatings Technology, 2019, 358, 50-56.	2.2	10
26	Tribological Performance of MoS2–WS2 Composite Film under the Atomic Oxygen Irradiation Conditions. Materials, 2020, 13, 1407.	1.3	10
27	Influence of Au2+ ions irradiation on the structure and wear resistance of amorphous MoS2 films. Applied Surface Science, 2022, 583, 152497.	3.1	9
28	MoS2-Sb2O3 film exhibiting better oxidation-resistance in atomic oxygen environment. Materials Letters, 2018, 219, 212-215.	1.3	8
29	Constructing Mono-/Di-/Tri-Types of Active Sites in MoS ₂ Film toward Understanding Their Electrocatalytic Activity for the Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 8974-8984.	2.5	8
30	Tribological behavior of WS2/oil-impregnated porous polyimide solid/liquid composite system. Industrial Lubrication and Tribology, 2019, 71, 459-466.	0.6	8
31	Tribological property of MoS2-Cr3O4 nanocomposite films prepared by PVD and liquid phase synthesis. Surface and Coatings Technology, 2020, 403, 126382.	2.2	8
32	Response of MoS2-Sb2O3 film to low-earth-orbit space environment. Materials Letters, 2018, 227, 161-164.	1.3	6
33	Amorphous Carbon Films In Situ Formed From PTFE Transfer Layer in Solid Lubricated Cryogenic Turbopump Bearings. Tribology Transactions, 2019, 62, 603-613.	1.1	5
34	Improved wear resistance of WS2 film by LT-deposited Ti interlayer with i‰ phase structure. Vacuum, 2018, 155, 423-427.	1.6	4
35	Superhydrophobic MoS ₂ Nanosheet–Cu ₂ O Nanoparticle Antiwear Coatings. ACS Applied Nano Materials, 2021, 4, 5503-5511.	2.4	4
36	LEO space environment exposure resistant behavior of Ag–Cu films. Surface and Coatings Technology, 2015, 275, 303-308.	2.2	3

#	Article	IF	CITATIONS
37	Low Deposition Temperature-Induced Changes of the Microstructure and Tribological Property of WS2 Film. Coatings, 2019, 9, 227.	1.2	2
38	The Improvement of the Irradiation Resistance of Amorphous MoS2 Films by Thermal Annealing. Nanomaterials, 2022, 12, 364.	1.9	0