John Sheridan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1995025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional instabilities in the wake of a circular cylinder. Experimental Thermal and Fluid Science, 1996, 12, 190-196.	1.5	204
2	The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. Journal of Fluid Mechanics, 2012, 710, 102-130.	1.4	165
3	Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. Journal of Fluid Mechanics, 2013, 717, 166-192.	1.4	165
4	Fluid–structure interaction of a square cylinder at different angles of attack. Journal of Fluid Mechanics, 2014, 747, 688-721.	1.4	160
5	FORCES AND WAKE MODES OF AN OSCILLATING CYLINDER. Journal of Fluids and Structures, 2001, 15, 523-532.	1.5	136
6	Controlled oscillations of a cylinder: forces and wake modes. Journal of Fluid Mechanics, 2005, 538, 31.	1.4	125
7	Wind tunnel analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134, 122-138.	1.7	122
8	Flow past a cylinder close to a free surface. Journal of Fluid Mechanics, 1997, 330, 1-30.	1.4	118
9	The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165, 46-57.	1.7	118
10	An experimental investigation of the recirculation zone formed downstream of a forward facing step. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98, 888-894.	1.7	111
11	Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance. Journal of Fluids and Structures, 2016, 61, 249-261.	1.5	106
12	Strain engineering water transport in graphene nanochannels. Physical Review E, 2011, 84, 056329.	0.8	101
13	Moving model analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136, 127-137.	1.7	100
14	Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate. Journal of Fluid Mechanics, 2014, 751, 570-600.	1.4	98
15	Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement. International Journal of Heat and Mass Transfer, 2015, 84, 1070-1081.	2.5	91
16	Three-dimensional vortex structures in a cylinder wake. Journal of Fluid Mechanics, 1996, 312, 201-222.	1.4	83
17	Friction of water slipping in carbon nanotubes. Physical Review E, 2011, 83, 036316.	0.8	80
18	A review of rotating cylinder wake transitions. Journal of Fluids and Structures, 2015, 53, 2-14.	1.5	77

#	Article	IF	CITATIONS
19	The effect of the ground condition on high-speed train slipstream. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172, 230-243.	1.7	74
20	A fluid dynamics approach to bioreactor design for cell and tissue culture. Biotechnology and Bioengineering, 2006, 94, 1196-1208.	1.7	73
21	Flow-induced vibration of two cylinders in tandem and staggered arrangements. Journal of Fluid Mechanics, 2017, 833, 98-130.	1.4	72
22	A hybrid solar desiccant cooling system. Solar Energy, 1985, 34, 187-193.	2.9	69
23	Flow topology in the wake of a cyclist and its effect on aerodynamic drag. Journal of Fluid Mechanics, 2014, 748, 5-35.	1.4	68
24	Dynamics of trailing vortices in the wake of a generic high-speed train. Journal of Fluids and Structures, 2016, 65, 238-256.	1.5	67
25	The interaction of helical tip and root vortices in a wind turbine wake. Physics of Fluids, 2013, 25, .	1.6	64
26	Particle image velocimetry and visualization of natural and forced flow around rectangular cylinders. Journal of Fluid Mechanics, 2003, 478, 299-323.	1.4	62
27	Damping effects on vortex-induced vibration of a circular cylinder and implications for power extraction. Journal of Fluids and Structures, 2018, 81, 289-308.	1.5	62
28	The primary and secondary instabilities of flow generated by an oscillating circular cylinder. Journal of Fluid Mechanics, 2006, 550, 359.	1.4	60
29	Experimental investigation of flow-induced vibration of a rotating circular cylinder. Journal of Fluid Mechanics, 2017, 829, 486-511.	1.4	60
30	The effect of bogies on high-speed train slipstream and wake. Journal of Fluids and Structures, 2018, 83, 471-489.	1.5	60
31	The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. Journal of Fluid Mechanics, 2014, 751, 71-105.	1.4	59
32	Flow topology and unsteady features of the wake of a generic high-speed train. Journal of Fluids and Structures, 2016, 61, 168-183.	1.5	58
33	Harnessing electrical power from vortex-induced vibration of a circular cylinder. Journal of Fluids and Structures, 2017, 70, 360-373.	1.5	56
34	Response of base suction and vortex shedding from rectangular prisms to transverse forcing. Journal of Fluid Mechanics, 2002, 461, 25-49.	1.4	55
35	Small is beautiful, and dry. Science China: Physics, Mechanics and Astronomy, 2010, 53, 2245-2259.	2.0	54
36	Numerical simulation of ice accretions on an aircraft wing. Aerospace Science and Technology, 2012, 23, 296-304.	2.5	54

#	Article	IF	CITATIONS
37	An experimental investigation of streamwise vortices in the wake of a bluff body. Journal of Fluids and Structures, 1994, 8, 621-635.	1.5	53
38	Scaling of streamwise vortices in wakes. Physics of Fluids, 1995, 7, 2307-2309.	1.6	53
39	Aerodynamic drag interactions between cyclists in a team pursuit. Sports Engineering, 2015, 18, 93-103.	0.5	53
40	The effect of tail geometry on the slipstream and unsteady wake structure of high-speed trains. Experimental Thermal and Fluid Science, 2017, 83, 215-230.	1.5	52
41	Dynamic leg-motion and its effect on the aerodynamic performance of cyclists. Journal of Fluids and Structures, 2016, 65, 121-137.	1.5	46
42	Vortex-induced vibration of a rotating sphere. Journal of Fluid Mechanics, 2018, 837, 258-292.	1.4	45
43	Characterisation of a horizontal axis wind turbine's tip and root vortices. Experiments in Fluids, 2013, 54, 1.	1.1	44
44	Experimental evidence of new three-dimensional modes in the wake of a rotating cylinder. Journal of Fluid Mechanics, 2013, 734, 567-594.	1.4	44
45	On the near wake of a simplified heavy vehicle. Journal of Fluids and Structures, 2016, 66, 293-314.	1.5	43
46	The effect of aspect ratio on the wake of the Ahmed body. Experiments in Fluids, 2015, 56, 1.	1.1	40
47	Computational Fluid Dynamics Study of the Effect of Leg Position on Cyclist Aerodynamic Drag. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	0.8	39
48	A wind-tunnel methodology for assessing the slipstream of high-speed trains. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166, 1-19.	1.7	39
49	Spanwise wake structures of a circular cylinder and two circular cylinders in tandem. Experimental Thermal and Fluid Science, 1994, 9, 299-308.	1.5	38
50	Controlled oscillations of a cylinder: a new wake state. Journal of Fluids and Structures, 2003, 17, 337-343.	1.5	37
51	The effect of porous media particle size on forced convection from a circular cylinder without assuming local thermal equilibrium between phases. International Journal of Heat and Mass Transfer, 2012, 55, 3366-3378.	2.5	37
52	Experimental investigation of in-line flow-induced vibration of a rotating circularÂcylinder. Journal of Fluid Mechanics, 2018, 847, 664-699.	1.4	37
53	Uncoupling the effects of aspect ratio, Reynolds number and Rossby number on a rotating insect-wing planform. Journal of Fluid Mechanics, 2019, 859, 921-948.	1.4	37
54	Shear layer vortices and longitudinal vortices in the near wake of a circular cylinder. Experimental Thermal and Fluid Science, 1996, 12, 169-174.	1.5	36

#	Article	IF	CITATIONS
55	Chaotic vortex induced vibrations. Physics of Fluids, 2014, 26, .	1.6	36
56	Relationship between aerodynamic forces, flow structures and wing camber for rotating insect wing planforms. Journal of Fluid Mechanics, 2013, 730, 52-75.	1.4	34
57	Time Averaged and Unsteady Near-Wake Analysis of Cars. , 0, , .		33
58	Effect of aspect ratio on the near-wake flow structure of an Ahmed body. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147, 95-103.	1.7	32
59	Aspect ratio studies on insect wings. Physics of Fluids, 2019, 31, .	1.6	32
60	Metastable states of a cylinder wake adjacent to a free surface. Physics of Fluids, 1995, 7, 2099-2101.	1.6	31
61	Two-dimensional Floquet stability analysis of the flow produced by an oscillating circular cylinder in quiescent fluid. European Journal of Mechanics, B/Fluids, 2004, 23, 99-106.	1.2	31
62	Frequency Analysis of Surface Pressures on an Airfoil After Stall. , 2003, , .		30
63	Wake states and response branches of forced and freely oscillatingÂcylinders. European Journal of Mechanics, B/Fluids, 2004, 23, 89-97.	1.2	30
64	The effect of mass ratio on the structural response of a freely vibrating square cylinder oriented at different angles of attack. Journal of Fluids and Structures, 2019, 86, 200-212.	1.5	30
65	Study of the flow around railway embankment of different heights with and without trains. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202, 104203.	1.7	30
66	Modification of three-dimensional transition in the wake of a rotationally oscillating cylinder. Journal of Fluid Mechanics, 2010, 643, 349-362.	1.4	28
67	Mutual inductance of two helical vortices. Journal of Fluid Mechanics, 2015, 774, 298-310.	1.4	28
68	Longitudinal vortex structures in a cylinder wake. Physics of Fluids, 1994, 6, 2883-2885.	1.6	27
69	Experimental investigation of flow-induced vibration of a sinusoidally rotating circularÂcylinder. Journal of Fluid Mechanics, 2018, 848, 430-466.	1.4	27
70	Effect of crosswinds and wheel selection on the aerodynamic behavior of a cyclist. Procedia Engineering, 2012, 34, 20-25.	1.2	26
71	Aerodynamic performance and riding posture in road cycling and triathlon. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2015, 229, 28-38.	0.4	26
72	The flow-induced vibration of an elliptical cross-section at varying angles of attack. Journal of Fluids and Structures, 2018, 78, 356-373.	1.5	26

#	Article	IF	CITATIONS
73	The effect of angle of attack on flow-induced vibration of low-side-ratio rectangular cylinders. Journal of Fluids and Structures, 2018, 82, 375-393.	1.5	26
74	Numerical analysis of bluff body wakes under periodic open-loop control. Journal of Fluid Mechanics, 2014, 739, 94-123.	1.4	25
75	Passive heaving of elliptical cylinders with active pitching – From cylinders towards flapping foils. Journal of Fluids and Structures, 2016, 67, 124-141.	1.5	25
76	Influences of marshalling length on the flow structure of a maglev train. International Journal of Heat and Fluid Flow, 2020, 85, 108604.	1.1	25
77	Kármán vortex formation from a cylinder: Role of phaseâ€locked Kelvin–Helmholtz vortices. Physics of Fluids, 1995, 7, 2288-2290.	1.6	24
78	Analysis of forced convection heat transfer from a circular cylinder embedded in a porous medium. International Journal of Thermal Sciences, 2012, 51, 121-131.	2.6	24
79	An experimental characterisation of the wake of a detailed heavy vehicle in cross-wind. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175, 364-375.	1.7	24
80	The Effect of Spatial Position on the Aerodynamic Interactions between Cyclists. Procedia Engineering, 2014, 72, 774-779.	1.2	23
81	Vortex-induced vibrations of a sphere close to a free surface. Journal of Fluid Mechanics, 2018, 846, 1023-1058.	1.4	23
82	Wake states of a tethered cylinder. Journal of Fluid Mechanics, 2007, 592, 1-21.	1.4	22
83	The effects of sound on forced convection over a flat plate. International Journal of Heat and Fluid Flow, 1986, 7, 61-68.	1.1	21
84	Global frequency selection in the observed time-mean wakes of circular cylinders. Journal of Fluid Mechanics, 2008, 601, 425-441.	1.4	21
85	Numerical simulation of rime ice accretions on an aerofoil using an Eulerian method. Aeronautical Journal, 2008, 112, 243-249.	1.1	21
86	Validation of thermal equilibrium assumption in forced convection steady and pulsatile flows over a cylinder embedded in a porous channel. International Communications in Heat and Mass Transfer, 2013, 43, 30-38.	2.9	21
87	From the circular cylinder to the flat plate wake: The variation of Strouhal number with Reynolds number for elliptical cylinders. Physics of Fluids, 2013, 25, .	1.6	21
88	Flow topology of a container train wagon subjected to varying local loading configurations. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169, 12-29.	1.7	21
89	Flow field interactions between two tandem cyclists. Experiments in Fluids, 2016, 57, 1.	1.1	20
90	The nature of the vortical structures in the near wake of the Ahmed body. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231, 1239-1244.	1.1	20

#	Article	IF	CITATIONS
91	Bluff-body propulsion produced by combined rotary and translational oscillation. Physics of Fluids, 1999, 11, 4-6.	1.6	19
92	Dynamic Sensitivity to Atmospheric Turbulence of Unmanned Air Vehicles with Varying Configuration. Journal of Aircraft, 2010, 47, 1873-1883.	1.7	19
93	Efficiency improvement study for small wind turbines through flow control. Sustainable Energy Technologies and Assessments, 2014, 7, 195-208.	1.7	19
94	Effects of flapping-motion profiles on insect-wing aerodynamics. Journal of Fluid Mechanics, 2020, 884, .	1.4	19
95	State selection in Taylor-vortex flow reached with an accelerated inner cylinder. Journal of Fluid Mechanics, 2003, 489, 79-99.	1.4	18
96	Flow over a cylinder subjected to combined translational and rotational oscillations. Journal of Fluids and Structures, 2012, 32, 135-145.	1.5	18
97	Phase dynamics of effective drag and lift components in vortex-induced vibration at low mass–damping. Journal of Fluids and Structures, 2020, 96, 103028.	1.5	18
98	Flow behind a cylinder forced by a combination of oscillatory translational and rotational motions. Physics of Fluids, 2009, 21, .	1.6	17
99	Characterisation of the wake of the DrivAer estate vehicle. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177, 242-259.	1.7	17
100	Aerodynamic Effects as a Maglev Train Passes Through a Noise Barrier. Flow, Turbulence and Combustion, 2020, 105, 761-785.	1.4	17
101	An overview of experiments on the dynamic sensitivity of MAVs to turbulence. Aeronautical Journal, 2010, 114, 485-492.	1.1	16
102	The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size. Royal Society Open Science, 2018, 5, 172197.	1.1	16
103	The Kelvin-Helmholtz Instability of the Separated Shear Layer from a Circular Cylinder. , 1993, , 115-118.		16
104	Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study. Physical Review Fluids, 2017, 2, .	1.0	16
105	A Bioreactor Model of Mouse Tumor Progression. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-9.	3.0	15
106	ENGINEERING IMAGING: USING PARTICLE IMAGE VELOCIMETRY TO SEE PHYSIOLOGY IN A NEW LIGHT. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 238-247.	0.9	15
107	Streamwise forced oscillations of circular and square cylinders. Physics of Fluids, 2012, 24, .	1.6	15
108	The influence of reduced Reynolds number on the wake of the DrivAer estate vehicle. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188, 207-216.	1.7	15

John Sheridan

#	Article	IF	CITATIONS
109	ON THE NEAR-WAKE TOPOLOGY OF AN OSCILLATING CYLINDER. Journal of Fluids and Structures, 1998, 12, 215-220.	1.5	14
110	The impact of rails on high-speed train slipstream and wake. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198, 104114.	1.7	14
111	Flowfield simulation and aerodynamic performance analysis of complex iced aerofoils with hybrid multi-block grid. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222, 417-422.	0.7	13
112	The three-dimensional wake of a cylinder undergoing a combination of translational and rotational oscillation in a quiescent fluid. Physics of Fluids, 2009, 21, .	1.6	13
113	Near-body vorticity dynamics of a square cylinder subjected to an inline pulsatile free stream flow. Physics of Fluids, 2016, 28, .	1.6	13
114	Branch/mode competition in the flow-induced vibration of a square cylinder. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170243.	1.6	13
115	An IDDES study of the near-wake flow topology of a simplified heavy vehicle. Transportation Safety and Environment, 2022, 4, .	1.1	13
116	Cylinder oscillations beneath a free-surface. European Journal of Mechanics, B/Fluids, 2004, 23, 81-88.	1.2	12
117	The effect of imposed rotary oscillation on theÂflow-induced vibration of a sphere. Journal of Fluid Mechanics, 2018, 855, 703-735.	1.4	12
118	Evolutionary shape optimisation enhances the lift coefficient of rotating wing geometries. Journal of Fluid Mechanics, 2019, 868, 369-384.	1.4	12
119	Natural convection in enclosures filled with a vapour and a non-condensing gas. International Journal of Heat and Mass Transfer, 1989, 32, 855-862.	2.5	11
120	Modelling of adhesive bonding for aircraft structures applying the insertion squeeze flow method. Composites Part B: Engineering, 2013, 50, 247-252.	5.9	11
121	Base pressure coefficients for flows around rectangular plates. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49, 311-318.	1.7	10
122	Development of a Wind Tunnel Test Section for Evaluation of Heavy Vehicle Aerodynamic Drag at a scale of 1:3. SAE International Journal of Commercial Vehicles, 2013, 6, 522-528.	0.4	10
123	Numerical simulation of parachute Fluid-Structure Interaction in terminal descent. Science China Technological Sciences, 2012, 55, 3131-3141.	2.0	9
124	Graphite flake self-retraction response based on potential seeking. Nanoscale Research Letters, 2012, 7, 185.	3.1	9
125	Contribution of Add-On Components to the Aerodynamic Drag of a Cab-Over Truck-Trailer Combination Vehicle. SAE International Journal of Commercial Vehicles, 0, 6, 477-485.	0.4	9
126	Vortex separation and interaction in the wake of inclined trapezoidal plates. Journal of Fluid Mechanics, 2015, 771, 341-369.	1.4	9

#	Article	IF	CITATIONS
127	Feedback control of flow-induced vibration of a sphere. Journal of Fluid Mechanics, 2020, 889, .	1.4	9
128	Aspect ratio and the dynamic wake of the Ahmed body. Experimental Thermal and Fluid Science, 2022, 130, 110457.	1.5	9
129	An experimental study of natural convection with coupled heat and mass transfer in porous media. International Journal of Heat and Mass Transfer, 1992, 35, 2131-2143.	2.5	8
130	Nearâ€wake of a perturbed, horizontal cylinder at a freeâ€surface. Physics of Fluids, 1996, 8, 2107-2116.	1.6	8
131	Digital readout manometer using an optical mouse. European Journal of Physics, 2007, 28, N11-N16.	0.3	8
132	Air flow around the point of an arrow. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2013, 227, 64-69.	0.4	8
133	Siting wind turbines near cliffs—the effect of wind direction. Wind Energy, 2016, 19, 1469-1484.	1.9	8
134	Velocity Perturbations Induced by the Longitudinal Vortices in a Cylinder Wake. Journal of Fluids Engineering, Transactions of the ASME, 1996, 118, 531-536.	0.8	7
135	Wake of forced flow around elliptical leading edge plates. Journal of Fluids and Structures, 2005, 20, 157-176.	1.5	7
136	Power-Spectral density estimate of the Bloor-Gerrard instability in flows around circular cylinders. Experiments in Fluids, 2011, 50, 527-534.	1.1	7
137	A quasi-static investigation of the effect of leg position on cyclist aerodynamic drag. Procedia Engineering, 2012, 34, 3-8.	1.2	7
138	Airflow hazard prediction for helicopter flight in icing condition. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228, 147-154.	0.7	7
139	Numerical analysis of periodic open-loop flow control on bluff bodies in ground proximity. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145, 339-350.	1.7	7
140	A Comparison of the Wake Structures of Scale and Full-scale Pedalling Cycling Models. Procedia Engineering, 2016, 147, 13-19.	1.2	7
141	An Experimental Investigation of Streamwise Vortices in the Wake of a Bluff Body. Journal of Fluids and Structures, 1994, 8, 621-625.	1.5	6
142	Observations of Flow Structure Changes with Aspect Ratio for Rotating Insect Wing Planforms. , 2012, , .		6
143	The influence of a small upstream wire on transition in a rotating cylinder wake. Journal of Fluid Mechanics, 2015, 769, .	1.4	6
144	THE WAKE OF AN ORBITING CYLINDER. Journal of Fluids and Structures, 1997, 11, 617-626.	1.5	5

#	Article	IF	CITATIONS
145	Experimental Assessment of CFD Predictions of Fascia Performance. , 0, , .		5
146	Optimisation of Boat-Tails for Heavy Vehicles. , 2011, , .		5
147	Evolution and breakdown of helical vortex wakes behind a wind turbine. Journal of Physics: Conference Series, 2014, 555, 012077.	0.3	5
148	Characteristics of force coefficients and energy transfer for vortex shedding modes of a square cylinder subjected to inline excitation. Journal of Fluids and Structures, 2018, 81, 270-288.	1.5	5
149	Excitation and Damping Fluid Forces on a Cylinder Undergoing Vortex-Induced Vibration. Frontiers in Physics, 2019, 7, .	1.0	5
150	Simulation of Resin Film Infusion Process using Finite Element/Nodal Control Volume Approach. Advanced Composites Letters, 1999, 8, 096369359900800.	1.3	4
151	Dominant Flow Structures In The Wake of A Cyclist. , 2012, , .		4
152	Surface flow visualisation over forward facing steps with varying yaw angle. Journal of Physics: Conference Series, 2014, 555, 012086.	0.3	4
153	A numerical model for the time-dependent wake of a pedalling cyclist. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2019, 233, 514-525.	0.4	4
154	On the mechanism of symmetric vortex shedding. Journal of Fluids and Structures, 2019, 91, 102706.	1.5	4
155	Large amplitude cross-stream sphere vibration generated by applied rotational oscillation. Journal of Fluids and Structures, 2019, 89, 156-165.	1.5	4
156	The double backward-facing step: interaction of multiple separated flow regions. Journal of Fluid Mechanics, 2022, 936, .	1.4	4
157	The Simulated and Experimental Performance of a Solar Heat Generating System. Journal of Solar Energy Engineering, Transactions of the ASME, 1982, 104, 317-325.	1.1	3
158	Experimental investigation of vortex shedding from a plate: effect of external velocity perturbation. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49, 401-410.	1.7	3
159	FLOW FIELD AND TOPOLOGICAL ANALYSIS OF HEMISPHERICAL PARACHUTE IN LOW ANGLES OF ATTACK. Modern Physics Letters B, 2010, 24, 1707-1725.	1.0	3
160	Friction law for water flowing in carbon nanotubes. , 2010, , .		3
161	An Analysis of the Wake of Pedalling Cyclists in a Tandem Formation. Procedia Engineering, 2016, 147, 7-12.	1.2	3
162	Vibration reduction of a sphere through shear-layer control. Journal of Fluids and Structures, 2021, 105, 103325.	1.5	3

#	Article	IF	CITATIONS
163	Active control of flow over a backward-facing step at high Reynolds numbers. International Journal of Heat and Fluid Flow, 2022, 93, 108891.	1.1	3
164	CONTROLLED MOTION OF A CYLINDER THROUGH A FREE SURFACE: EFFECT OF DEPTH OF PENETRATION. Journal of Fluids and Structures, 1996, 10, 309-317.	1.5	2
165	The Effect of Turbulence Intensity on Performance of a NACA4421 Airfoil Section. , 2004, , .		2
166	Numerical simulation of fluid-structure interaction in the opening process of conical parachute. Aeronautical Journal, 2009, 113, 191-200.	1.1	2
167	Numerical and Experimental Investigation of the Effect of Multiple Rotating Cylinders on Base Pressure of a Three Dimensional Bluff Body in Ground Proximity. , 2012, , .		2
168	Siting Wind Turbines Near Cliffs: The Effect of Ruggedness. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	0.8	2
169	Flow-induced vibration of a cube orientated at different incidence angles. Journal of Fluids and Structures, 2019, 91, 102701.	1.5	2
170	Non-Newtonian flow over the trailing edge of an airfoil. Experimental Thermal and Fluid Science, 1996, 12, 244-249.	1.5	1
171	The response of the separated shear layer from a cylinder to acoustic perturbations. , 1997, , .		1
172	Dynamic Sensitivity to Atmospheric Turbulence of a Fixed-Wing MAV with Varying Configuration. , 2009, , .		1
173	Time-dependent fluid flow and heat transfer around a circular heated cylinder embedded in a horizontal packed bed of spheres. AIP Conference Proceedings, 2010, , .	0.3	1
174	Flow Characteristics of a Three Dimensional Bluff Body With a Single Rotating Cylinder. , 2012, , .		1
175	A device to achieve low Reynolds numbers in an open surface water channel. Experiments in Fluids, 2014, 55, 1.	1.1	1
176	Wind Tunnel Investigation of a Double Stacked Wagon in Free-Stream. , 2015, , .		1
177	The Effect of Oscillatory Boat-Tail Flaps on the Near Wake of a Prototypical Heavy Vehicle. , 2010, , .		1
178	TEMPERATURE PROFILES IN COUPLED HEAT AND MASS TRANSFER IN POROUS MEDIA. , 1992, , 764-773.		0
179	A spectral method for Taylor vortex flow and Taylor-Couette flow. , 1997, , .		0
180	Surface Roughness Effects on Circular Cylinders at High Reynolds Numbers. , 2002, , 187.		0

#	Article	IF	CITATIONS
181	Vortex Forces on an Oscillating Cylinder. , 2002, , 275.		0
182	Thermo-Fluid Mechanics of Fluid Injection and Refrigeration System Performance Improvement. , 2007, , 93.		0
183	Numerical simulation of fluid-structure interaction in the opening process of conical parachute. Aeronautical Journal, 2009, 113, 165-175.	1.1	Ο
184	An Experimental Study of the Near-Wake Structure of a Cylinder Undergoing Combined Translational and Rotational Oscillatory Motions. , 2010, , .		0
185	A thermistor-based instrument for measuring vehicle cooling airflow. , 2011, , 145-154.		Ο
186	Identification of Dynamics of Surface Suction Over an Airfoil at Low Reynolds Numbers. , 2013, , .		0
187	Flow-Induced Vibration of an Elastically-Mounted Cylinder Undergoing Forced Rotation. , 2014, , .		Ο
188	Linear stability analysis for an optimum Glauert rotor modelled by an actuator disc. Journal of Physics: Conference Series, 2014, 524, 012150.	0.3	0
189	Wake Flows of Highly Detailed Heavy Vehicles. International Journal of Automotive Technology, 2021, 22, 1227-1243.	0.7	Ο
190	Experimental Study of a Tethered Cylinder in a Free Stream. Fluid Mechanics and Its Applications, 2003, , 125-133.	0.1	0
191	Flow-Induced Vibration and Energy Harvesting Using Fully-Passive Flapping Foils. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, 53-62	0.1	0