Hans-Joachim Lehmler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1994865/publications.pdf

Version: 2024-02-01

287 papers

9,031 citations

48 h-index

44042

⁷⁶⁸⁷² **74**

298 all docs 298 docs citations

298 times ranked

7141 citing authors

g-index

#	Article	IF	Citations
1	Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega, 2018, 3, 6523-6532.	1.6	341
2	Metabolism and metabolites of polychlorinated biphenyls. Critical Reviews in Toxicology, 2015, 45, 245-272.	1.9	321
3	Synthesis of environmentally relevant fluorinated surfactants—a review. Chemosphere, 2005, 58, 1471-1496.	4.2	296
4	A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environmental Sciences: Processes and Impacts, 2020, 22, 1315-1346.	1.7	187
5	Antibiotic Pollution in Marine Food Webs in Laizhou Bay, North China: Trophodynamics and Human Exposure Implication. Environmental Science & Exposure Implication. Environmental Science & Exposure Implication.	4.6	156
6	Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors Environmental Health Perspectives, 2004, 112, 516-523.	2.8	141
7	Production of DNA Strand Breaks in Vitro and Reactive Oxygen Species in Vitro and in HL-60 Cells by PCB Metabolites. Toxicological Sciences, 2001, 60, 92-102.	1.4	121
8	Chiral Polychlorinated Biphenyl Transport, Metabolism, and Distribution: A Review. Environmental Science & Environmental Scien	4.6	120
9	Bisphenol A substitutes and obesity in US adults: analysis of a population-based, cross-sectional study. Lancet Planetary Health, The, 2017, 1, e114-e122.	5.1	118
10	Fluorinated-Surfactant-Templated Synthesis of Hollow Silica Particles with a Single Layer of Mesopores in Their Shells. Advanced Materials, 2005, 17, 2368-2371.	11.1	110
11	Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinones. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9725-9730.	3.3	108
12	Hundreds of Unrecognized Halogenated Contaminants Discovered in Polar Bear Serum. Angewandte Chemie - International Edition, 2018, 57, 16401-16406.	7.2	107
13	Association of Bisphenol A and Its Substitutes, Bisphenol F and Bisphenol S, with Obesity in United States Children and Adolescents. Diabetes and Metabolism Journal, 2019, 43, 59.	1.8	99
14	Atmospheric PCB congeners across Chicago. Atmospheric Environment, 2010, 44, 1550-1557.	1.9	98
15	Sulfated Metabolites of Polychlorinated Biphenyls Are High-Affinity Ligands for the Thyroid Hormone Transport Protein Transthyretin. Environmental Health Perspectives, 2013, 121, 657-662.	2.8	92
16	Association Between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population. JAMA Internal Medicine, 2020, 180, 367.	2.6	91
17	Toxicity of Hydroxylated and Quinoid PCB Metabolites:  Inhibition of Gap Junctional Intercellular Communication and Activation of Aryl Hydrocarbon and Estrogen Receptors in Hepatic and Mammary Cells. Chemical Research in Toxicology, 2004, 17, 340-347.	1.7	83
18	Semiquinone Radicals from Oxygenated Polychlorinated Biphenyls: Electron Paramagnetic Resonance Studies. Chemical Research in Toxicology, 2008, 21, 1359-1367.	1.7	79

#	Article	IF	CITATIONS
19	Hydroxylated Polychlorinated Biphenyls Are Substrates and Inhibitors of Human Hydroxysteroid Sulfotransferase SULT2A1. Chemical Research in Toxicology, 2006, 19, 1420-1425.	1.7	78
20	Enantiomeric Specificity of (\hat{a}°)-2,2 $\hat{a}\in^2$,3,3 $\hat{a}\in^2$,6,6 $\hat{a}\in^2$ -Hexachlorobiphenyl toward Ryanodine Receptor Types 1 an Chemical Research in Toxicology, 2009, 22, 201-207.	d _{1.7}	77
21	Glucuronidation of Hydroxylated Polychlorinated Biphenyls (PCBs). Chemical Research in Toxicology, 2002, 15, 1259-1266.	1.7	76
22	Stereoselective Formation of Mono- and Dihydroxylated Polychlorinated Biphenyls by Rat Cytochrome P450 2B1. Environmental Science & Environmental Scie	4.6	76
23	Polychlorinated biphenyls as initiators in liver carcinogenesis: resistant hepatocyte model. Toxicology and Applied Pharmacology, 2003, 186, 55-62.	1.3	73
24	Cellular Glutathione Status Modulates Polychlorinated Biphenyl-Induced Stress Response and Apoptosis in Vascular Endothelial Cells. Toxicology and Applied Pharmacology, 2000, 166, 36-42.	1.3	72
25	Synthesis of hydroxylated PCB metabolites with the Suzuki-coupling. Chemosphere, 2001, 45, 1119-1127.	4.2	72
26	Aromatic organosulfates in atmospheric aerosols: Synthesis, characterization, and abundance. Atmospheric Environment, 2014, 94, 366-373.	1.9	71
27	Chlorination Increases the Persistence of Semiquinone Free Radicals Derived from Polychlorinated Biphenyl Hydroquinones and Quinones. Journal of Organic Chemistry, 2008, 73, 8296-8304.	1.7	70
28	Polychlorinated-biphenyl-induced oxidative stress and cytotoxicity can be mitigated by antioxidants after exposure. Free Radical Biology and Medicine, 2009, 47, 1762-1771.	1.3	69
29	Chiral polychlorinated biphenyls: absorption, metabolism and excretionâ€"a review. Environmental Science and Pollution Research, 2016, 23, 2042-2057.	2.7	67
30	Identification of Sulfated Metabolites of 4-Chlorobiphenyl (PCB3) in the Serum and Urine of Male Rats. Chemical Research in Toxicology, 2012, 25, 2796-2804.	1.7	66
31	PCB 136 Atropselectively Alters Morphometric and Functional Parameters of Neuronal Connectivity in Cultured Rat Hippocampal Neurons via Ryanodine Receptor-Dependent Mechanisms. Toxicological Sciences, 2014, 138, 379-392.	1.4	66
32	Effects of PCB 84 enantiomers on [3H]-phorbol ester binding in rat cerebellar granule cells and 45Ca2+-uptake in rat cerebellum. Toxicology Letters, 2005, 156, 391-400.	0.4	65
33	Synthesis of polychlorinated biphenyls (PCBs) using the Suzuki-coupling. Chemosphere, 2001, 45, 137-143.	4.2	64
34	Enantioselective disposition of PCB 136 (2,2′,3,3′,6,6′-hexachlorobiphenyl) in C57BL/6 mice after oral and intraperitoneal administration. Chirality, 2007, 19, 56-66.	d _{1.3}	63
35	Association Between Bisphenol A Exposure and Risk of All-Cause and Cause-Specific Mortality in US Adults. JAMA Network Open, 2020, 3, e2011620.	2.8	63
36	Comparative Analyses of the 12 Most Abundant PCB Congeners Detected in Human Maternal Serum for Activity at the Thyroid Hormone Receptor and Ryanodine Receptor. Environmental Science & Emp; Technology, 2019, 53, 3948-3958.	4.6	60

#	Article	IF	CITATIONS
37	Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene Environmental Health Perspectives, 2002, 110, 343-348.	2.8	59
38	InÂvitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Environmental Pollution, 2018, 237, 473-486.	3.7	59
39	Elongated Silica Nanoparticles with a Mesh Phase Mesopore Structure by Fluorosurfactant Templating. Langmuir, 2004, 20, 6981-6984.	1.6	57
40	Polychlorinated Biphenyl Quinone Metabolites Poison Human Topoisomerase Ilα: Altering Enzyme Function by Blocking theN-Terminal Protein Gateâ€. Biochemistry, 2006, 45, 10140-10152.	1.2	57
41	Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells. Toxicology and Applied Pharmacology, 2009, 240, 306-313.	1.3	57
42	2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Is Enantioselectively Oxidized to Hydroxylated Metabolites b Rat Liver Microsomes. Chemical Research in Toxicology, 2011, 24, 2249-2257.	^{0y} 1.7	57
43	2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Atropisomers Interact Enantioselectively with Hepatic Microsomal Cytochrome P450 Enzymes. Chemical Research in Toxicology, 2008, 21, 1295-1303.	1.7	55
44	2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) and Its Hydroxylated Metabolites Are Enantiomerically Enriched in Female Mice. Environmental Science & E	4.6	55
45	Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environmental Science and Pollution Research, 2018, 25, 16277-16290.	2.7	55
46	Differences in the isomer composition of perfluoroctanesulfonyl (PFOS) derivatives. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 249-255.	0.9	52
47	Detection of 3,3′-Dichlorobiphenyl in Human Maternal Plasma and Its Effects on Axonal and Dendritic Growth in Primary Rat Neurons. Toxicological Sciences, 2017, 158, 401-411.	1.4	52
48	Enantioselective Biotransformation of Chiral PCBs in Whole Poplar Plants. Environmental Science & Enantioselective Biotransformation of Chiral PCBs in Whole Poplar Plants. Environmental Science & Enantioselective Biotransformation of Chiral PCBs in Whole Poplar Plants. Environmental Science & Enantioselective Biotransformation of Chiral PCBs in Whole Poplar Plants. Environmental Science & Enantioselective Biotransformation of Chiral PCBs in Whole Poplar Plants. Environmental Science & Environmental Scienc	4.6	51
49	Structure–Activity Relationships for Hydroxylated Polychlorinated Biphenyls As Inhibitors of the Sulfation of Dehydroepiandrosterone Catalyzed by Human Hydroxysteroid Sulfotransferase SULT2A1. Chemical Research in Toxicology, 2011, 24, 1720-1728.	1.7	50
50	Environmental Fate and Effects of Dichloroacetamide Herbicide Safeners: "Inert―yet Biologically Active Agrochemical Ingredients. Environmental Science and Technology Letters, 2015, 2, 260-269.	3.9	49
51	Flame Retardant BDE-47 Effectively Activates Nuclear Receptor CAR in Human Primary Hepatocytes. Toxicological Sciences, 2014, 137, 292-302.	1.4	48
52	Gas Chromatographic Analysis with Chiral Cyclodextrin Phases Reveals the Enantioselective Formation of Hydroxylated Polychlorinated Biphenyls by Rat Liver Microsomes. Environmental Science & Environ	4.6	47
53	Toxicokinetics of chiral polychlorinated biphenyls across different species—a review. Environmental Science and Pollution Research, 2016, 23, 2058-2080.	2.7	47
54	Controlling Nanopore Size and Shape by Fluorosurfactant Templating of Silica. Chemistry of Materials, 2005, 17, 916-925.	3.2	46

#	Article	IF	Citations
55	Well-ordered mesoporous silica prepared by cationic fluorinated surfactant templating. Microporous and Mesoporous Materials, 2004, 73, 197-202.	2.2	45
56	A New Player in Environmentally Induced Oxidative Stress: Polychlorinated Biphenyl Congener, 3,3′-Dichlorobiphenyl (PCB11). Toxicological Sciences, 2013, 136, 39-50.	1.4	45
57	Mixing of Partially Fluorinated Carboxylic Acids and Their Hydrocarbon Analogues with Dipalmitoylphosphatidylcholine at the Airâ°'Water Interface. Langmuir, 2000, 16, 10161-10166.	1.6	44
58	Initiating Activity of 4-Chlorobiphenyl Metabolites in the Resistant Hepatocyte Model. Toxicological Sciences, 2004, 79, 41-46.	1.4	44
59	Simultaneous extraction and clean-up of polychlorinated biphenyls and their metabolites from small tissue samples using pressurized liquid extraction. Journal of Chromatography A, 2008, 1214, 37-46.	1.8	44
60	Hydrophobic tail length, degree of fluorination and headgroup stereochemistry are determinants of the biocompatibility of (fluorinated) carbohydrate surfactants. Colloids and Surfaces B: Biointerfaces, 2009, 73, 65-74.	2.5	44
61	Environmental exposure to pyrethroid pesticides in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2007–2012. Environmental Pollution, 2020, 267, 115489.	3.7	44
62	Behavior of partially fluorinated carboxylic acids at the air–water interface. Journal of Fluorine Chemistry, 2001, 107, 141-146.	0.9	43
63	Polychlorobiphenylols are selective inhibitors of human phenol sulfotransferase 1A1 with 4-nitrophenol as a substrate. Chemico-Biological Interactions, 2006, 159, 235-246.	1.7	43
64	Mixing of perfluorinated carboxylic acids with dipalmitoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1664, 141-149.	1.4	42
65	Synthesis and structure of environmentally relevant perfluorinated sulfonamides. Journal of Fluorine Chemistry, 2007, 128, 595-607.	0.9	42
66	Airborne polychlorinated biphenyls (PCBs) reduce telomerase activity and shorten telomere length in immortal human skin keratinocytes (HaCat). Toxicology Letters, 2011, 204, 64-70.	0.4	42
67	Structure-Activity Relationship of Selected Meta- and Para-Hydroxylated Non–Dioxin Like Polychlorinated Biphenyls: From Single RyR1 Channels to Muscle Dysfunction. Toxicological Sciences, 2013, 136, 500-513.	1.4	42
68	An Extended Structure–Activity Relationship of Nondioxin-Like PCBs Evaluates and Supports Modeling Predictions and Identifies Picomolar Potency of PCB 202 Towards Ryanodine Receptors. Toxicological Sciences, 2017, 155, 170-181.	1.4	42
69	Mixing of perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl phosphatidylcholine (DPPC). Colloids and Surfaces B: Biointerfaces, 2006, 51, 25-29.	2.5	41
70	Structure-Activity Relationships for Hydroxylated Polychlorinated Biphenyls as Substrates and Inhibitors of Rat Sulfotransferases and Modification of These Relationships by Changes in Thiol Status. Drug Metabolism and Disposition, 2009, 37, 1065-1072.	1.7	41
71	Subacute exposure to N-ethyl perfluorooctanesulfonamidoethanol results in the formation of perfluorooctanesulfonate and alters superoxide dismutase activity in female rats. Archives of Toxicology, 2009, 83, 909-924.	1.9	41
72	Model and cell membrane partitioning of perfluorooctanesulfonate is independent of the lipid chain length. Colloids and Surfaces B: Biointerfaces, 2010, 76, 128-136.	2.5	41

#	Article	IF	CITATIONS
73	Sulfation of Lower Chlorinated Polychlorinated Biphenyls Increases Their Affinity for the Major Drug-Binding Sites of Human Serum Albumin. Environmental Science & Echnology, 2016, 50, 5320-5327.	4.6	40
74	Synthesis of Inorganic and Organic–Inorganic Hybrid Hollow Particles Using a Cationic Surfactant with a Partially Fluorinated Tail. Advanced Functional Materials, 2007, 17, 2500-2508.	7.8	39
75	Oxidation of Polychlorinated Biphenyls by Liver Tissue Slices from Phenobarbital-Pretreated Mice Is Congener-Specific and Atropselective. Chemical Research in Toxicology, 2013, 26, 1642-1651.	1.7	39
76	Disposition of Phenolic and Sulfated Metabolites after Inhalation Exposure to 4-Chlorobiphenyl (PCB3) in Female Rats. Chemical Research in Toxicology, 2014, 27, 1411-1420.	1.7	39
77	Microsomal Oxidation of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Results in Species-Dependent Chira Signatures of the Hydroxylated Metabolites. Environmental Science & Environmental Scienc	al 4.6	39
78	Congener-Specific Tissue Distribution of Aroclor 1254 and a Highly Chlorinated Environmental PCB Mixture in Rats. Environmental Science & Environmenta	4.6	38
79	Clearance of Polychlorinated Biphenyl Atropisomers is Enantioselective in Female C57Bl/6 Mice. Environmental Science & Environmental Science & Environ	4.6	38
80	An efficient approach to sulfate metabolites of polychlorinated biphenyls. Environment International, 2010, 36, 843-848.	4.8	38
81	Tissue Distribution, Metabolism, and Excretion of $3,3\hat{a}\in^2$ -Dichloro- $4\hat{a}\in^2$ -sulfooxy-biphenyl in the Rat. Environmental Science & Environmenta	4.6	38
82	Time Course of Congener Uptake and Elimination in Rats after Short-Term Inhalation Exposure to an Airborne Polychlorinated Biphenyl (PCB) Mixture. Environmental Science & Env	4.6	37
83	Metabolism of $2,2\hat{a}\in^2,3,3\hat{a}\in^2,6,6\hat{a}\in^2$ -hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica, 2013, 43, 933-947.	0.5	37
84	Z′ = 4 structure without obvious pseudosymmetry: implications for the formation of solid-state compounds. Acta Crystallographica Section B: Structural Science, 2002, 58, 140-147.	1.8	36
85	Effect of potassium perfluorooctanesulfonate, perfluorooctanoate and octanesulfonate on the phase transition of dipalmitoylphosphatidylcholine (DPPC) bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1299-1308.	1.4	36
86	Perfluorocarbon compounds as vehicles for pulmonary drug delivery. Expert Opinion on Drug Delivery, 2007, 4, 247-262.	2.4	35
87	Gas chromatographic separation of methoxylated polychlorinated biphenyl atropisomers. Journal of Chromatography A, 2008, 1207, 146-154.	1.8	35
88	Identification of a sulfate metabolite of PCB 11 in human serum. Environment International, 2017, 98, 120-128.	4.8	35
89	Effect of antioxidant phytochemicals on the hepatic tumor promoting activity of $3,3\hat{a}\in^2$, $4,4\hat{a}\in^2$ -tetrachlorobiphenyl (PCB-77). Food and Chemical Toxicology, 2008, 46, 3467-3474.	1.8	34
90	Hydroxylated Metabolites of 4-Monochlorobiphenyl and Its Metabolic Pathway in Whole Poplar Plants. Environmental Science & Env	4.6	34

#	Article	IF	CITATIONS
91	Gut Microbiota Modulates Interactions Between Polychlorinated Biphenyls and Bile Acid Homeostasis. Toxicological Sciences, 2018, 166, 269-287.	1.4	34
92	Comparison of the actions of 4-chlorobiphenyl and its hydroxylated metabolites on estradiol secretion by ovarian follicles in primary cells in culture. Reproductive Toxicology, 2005, 20, 57-64.	1.3	33
93	Role of oxidative stress in the promoting activities of PCBs. Environmental Toxicology and Pharmacology, 2008, 25, 247-250.	2.0	33
94	Hepatic Metabolism Affects the Atropselective Disposition of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) in Mice. Environmental Science & Envir) 4.6	33
95	Interaction of a Partially Fluorinated Heptadecanoic Acid with Diacyl Phosphatidylcholines of Varying Chain Length. Langmuir, 2003, 19, 8843-8851.	1.6	32
96	In VitroInhibition of Human Hepatic and cDNA-Expressed Sulfotransferase Activity with 3-Hydroxybenzo[a]pyrene by Polychlorobiphenylols. Environmental Health Perspectives, 2005, 113, 680-687.	2.8	32
97	Synthesis and biocompatibility evaluation of partially fluorinated pyridinium bromides. New Journal of Chemistry, 2006, 30, 944-951.	1.4	32
98	Catalase ameliorates polychlorinated biphenyl-induced cytotoxicity in nonmalignant human breast epithelial cells. Free Radical Biology and Medicine, 2008, 45, 1094-1102.	1.3	32
99	Synthesis of Sterically Hindered Polychlorinated Biphenyl Derivatives. Synthesis, 2011, 2011, 1045-1054.	1.2	32
100	Subchronic Inhalation Exposure Study of an Airborne Polychlorinated Biphenyl Mixture Resembling the Chicago Ambient Air Congener Profile. Environmental Science & Environmental Science & 2012, 46, 9653-9662.	4.6	32
101	Disruption of Phosphatidylcholine Monolayers and Bilayers by Perfluorobutane Sulfonate. Journal of Physical Chemistry B, 2012, 116, 9999-10007.	1.2	32
102	Synthesis, thermal properties, and cytotoxicity evaluation of hydrocarbon and fluorocarbon alkyl \hat{l}^2 -d-xylopyranoside surfactants. Carbohydrate Research, 2012, 349, 12-23.	1.1	32
103	Elimination of Inhaled 3,3′-Dichlorobiphenyl and the Formation of the 4-Hydroxylated Metabolite. Environmental Science & En	4.6	32
104	Polychlorinated Biphenyl Quinone Metabolite Promotes p53-Dependent DNA Damage Checkpoint Activation, S-Phase Cycle Arrest and Extrinsic Apoptosis in Human Liver Hepatocellular Carcinoma HepG2 Cells. Chemical Research in Toxicology, 2015, 28, 2160-2169.	1.7	32
105	Human CYP2A6, CYP2B6, AND CYP2E1 Atropselectively Metabolize Polychlorinated Biphenyls to Hydroxylated Metabolites. Environmental Science & Environmen	4.6	32
106	Mixing of Partially Fluorinated Carboxylic Acids with Their Hydrocarbon Analogs at the Air–Water Interface. Journal of Colloid and Interface Science, 2002, 249, 381-387.	5.0	31
107	DOSE-DEPENDENT ENANTIOMERIC ENRICHMENT OF 2,2′,3,3′,6,6′-HEXACHLOROBIPHENYL IN FEMALE M Environmental Toxicology and Chemistry, 2008, 27, 299.	ICE. 2.2	31
108	Influence of dietary fat on the enantioselective disposition of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in female mice. Food and Chemical Toxicology, 2008, 46, 637-644.	1.8	31

#	Article	IF	CITATIONS
109	Synthesis and biocompatibility evaluation of fluorinated, single-tailed glucopyranoside surfactants. New Journal of Chemistry, 2008, 32, 2169.	1.4	31
110	Cytochrome P450 mRNA Expression in the Rodent Brain: Species-, Sex-, and Region-Dependent Differences. Drug Metabolism and Disposition, 2014, 42, 239-244.	1.7	30
111	Distribution of Chiral PCBs in Selected Tissues in the Laboratory Rat. Environmental Science & Eamp; Technology, 2006, 40, 3704-3710.	4.6	29
112	Biological and Tumor-Promoting Effects of Dioxin-like and Non-Dioxin-like Polychlorinated Biphenyls in Mouse Liver After Single or Combined Treatment. Toxicological Sciences, 2013, 133, 29-41.	1.4	29
113	Enantioselective Transport and Biotransformation of Chiral Hydroxylated Metabolites of Polychlorinated Biphenyls in Whole Poplar Plants. Environmental Science & Enplay: Technology, 2014, 48, 12213-12220.	4.6	29
114	The three-dimensional structure of 3,3′,4,4′-tetrachlorobiphenyl, a dioxin-like polychlorinated biphenyl (PCB). Chemosphere, 2008, 70, 1694-1698.	4.2	28
115	Oxidative DNA adducts after Cu2+-mediated activation of dihydroxy PCBs: Role of reactive oxygen species. Free Radical Biology and Medicine, 2009, 46, 1346-1352.	1.3	28
116	Synthesis and Tuning of Bimodal Mesoporous Silica by Combined Hydrocarbon/Fluorocarbon Surfactant Templating. Langmuir, 2009, 25, 6486-6492.	1.6	28
117	Editor's Highlight: Congener-Specific Disposition of Chiral Polychlorinated Biphenyls in Lactating Mice and Their Offspring: Implications for PCB Developmental Neurotoxicity. Toxicological Sciences, 2017, 158, 101-115.	1.4	28
118	Hydroxylated and sulfated metabolites of commonly observed airborne polychlorinated biphenyls display selective uptake and toxicity in N27, SH-SY5Y, and HepG2 cells. Environmental Toxicology and Pharmacology, 2018, 62, 69-78.	2.0	28
119	The Ullmann Coupling Reaction:  A New Approach to Tetraarylstannanes. Organometallics, 2006, 25, 4207-4214.	1.1	27
120	Identification of hydroxylated metabolites of $3,3\hat{a}\in^2$, $4,4\hat{a}\in^2$ -tetrachlorobiphenyl and metabolic pathway in whole poplar plants. Chemosphere, 2010, 81, 523-528.	4.2	27
121	Partitioning of perfluorooctanoate into phosphatidylcholine bilayers is chain length-independent. Chemistry and Physics of Lipids, 2010, 163, 300-308.	1.5	27
122	Development of a synthetic PCB mixture resembling the average polychlorinated biphenyl profile in Chicago air. Environment International, 2010, 36, 819-827.	4.8	27
123	Behavior of 10-(perfluorohexyl)-decanol, a partially fluorinated analog of hexadecanol, at the airâ \in water interface. Journal of Fluorine Chemistry, 2002, 117, 17-22.	0.9	26
124	Synthesis of polychlorinated biphenyls and their metabolites with a modified Suzuki-coupling. Chemosphere, 2004, 56, 735-744.	4.2	26
125	Inhibition of Cytochromes P450 and the Hydroxylation of 4-Monochlorobiphenyl in Whole Poplar. Environmental Science & Environmental Science & Environm	4.6	26
126	Inhibition of the promotion of hepatocarcinogenesis by 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153) by the deletion of the p50 subunit of NF-κB in mice. Toxicology and Applied Pharmacology, 2008, 232, 302-308.	he 1.3	25

#	Article	IF	CITATIONS
127	Synthesis, surface properties, and biocompatibility of 1,2,3-triazole-containing alkyl \hat{l}^2 -d-xylopyranoside surfactants. Carbohydrate Research, 2013, 379, 68-77.	1.1	25
128	Sulfate Conjugates Are Urinary Markers of Inhalation Exposure to 4-Chlorobiphenyl (PCB3). Chemical Research in Toxicology, 2013, 26, 853-855.	1.7	25
129	Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants. Environmental Science & Emp; Technology, 2013, 47, 557-562.	4.6	25
130	2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) Is Atropselectively Metabolized to para-Hydroxylated Metabolites by Human Liver Microsomes. Chemical Research in Toxicology, 2016, 29, 2108-2110.	1.7	25
131	Mixing behavior of 10-(perfluorohexyl)-decanol and DPPC. Colloids and Surfaces B: Biointerfaces, 2005, 44, 74-81.	2.5	24
132	Chlordane and Heptachlor Are Metabolized Enantioselectively by Rat Liver Microsomes. Environmental Science & Environmental Sci	4.6	24
133	Cardiovascular Effects of Polychlorinated Biphenyls and Their Major Metabolites. Environmental Health Perspectives, 2020, 128, 77008.	2.8	24
134	Induction of cytochromes P450, caspase-3 and DNA damage by PCB3 and its hydroxylated metabolites in porcine ovary. Toxicology Letters, 2006, 166, 200-211.	0.4	23
135	Enantiomeric Enrichment of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) in Mice After Induction of CYP Enzymes. Archives of Environmental Contamination and Toxicology, 2008, 55, 510-517.	2.1	23
136	Assessment of the disposition of chiral polychlorinated biphenyls in female mdr 1a/b knockout versus wild-type mice using multivariate analyses. Environment International, 2010, 36, 884-892.	4.8	23
137	Microsomal Metabolism of Prochiral Polychlorinated Biphenyls Results in the Enantioselective Formation of Chiral Metabolites. Environmental Science &	4.6	23
138	Environmental tin exposure in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2011–2014. Environmental Pollution, 2018, 240, 599-606.	3.7	23
139	Glucuronidation of Polychlorinated Biphenylols and UDP-Glucuronic Acid Concentrations in Channel Catfish Liver and Intestine. Drug Metabolism and Disposition, 2008, 36, 623-630.	1.7	22
140	Effect of Pregnancy on the Disposition of $2,2\hat{a}\in^2,3,5\hat{a}\in^2,6$ -Pentachlorobiphenyl (PCB 95) Atropisomers and Their Hydroxylated Metabolites in Female Mice. Chemical Research in Toxicology, 2015, 28, 1774-1783.	1.7	22
141	Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells. Environmental Science and Pollution Research, 2016, 23, 2186-2200.	2.7	22
142	Human Liver Microsomes Atropselectively Metabolize $2,2\hat{a}\in^2$, $3,4\hat{a}\in^2$, 6 -Pentachlorobiphenyl (PCB 91) to a 1,2-Shift Product as the Major Metabolite. Environmental Science & Environmental	4.6	22
143	Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environmental Science and Pollution Research, 2018, 25, 16508-16521.	2.7	22
144	Detection and Quantification of Polychlorinated Biphenyl Sulfates in Human Serum. Environmental Science & Environmental Scienc	4.6	22

#	Article	IF	CITATIONS
145	Interaction of benzoquinone- and hydroquinone-derivatives of lower chlorinated biphenyls with DNA and nucleotides in vitro. Chemico-Biological Interactions, 2003, 142, 307-316.	1.7	21
146	In vitro exposure of porcine prepubertal follicles to 4-chlorobiphenyl (PCB3) and its hydroxylated metabolites: Effects on sex hormone levels and aromatase activity. Toxicology Letters, 2006, 164, 113-122.	0.4	21
147	Assigning atropisomer elution orders using atropisomerically enriched polychlorinated biphenyl fractions generated by microsomal metabolism. Journal of Chromatography A, 2013, 1278, 133-144.	1.8	21
148	Hydroxylated and sulfated metabolites of commonly occurring airborne polychlorinated biphenyls inhibit human steroid sulfotransferases SULT1E1 and SULT2A1. Environmental Toxicology and Pharmacology, 2018, 58, 196-201.	2.0	21
149	Molecular cytotoxic mechanisms of catecholic polychlorinated biphenyl metabolites in isolated rat hepatocytes. Chemico-Biological Interactions, 2007, 167, 184-192.	1.7	20
150	Monohydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) and Dihydroxylated Polybrominated Biphenyls (Di-OH-PBBs): Novel Photoproducts of 2,6-Dibromophenol. Environmental Science & Eamp; Technology, 2015, 49, 14120-14128.	4.6	20
151	The three-dimensional structure of 3,3′,5′-trichloro-4-methoxybiphenyl, a "coplanar―polychlorinated biphenyl (PCB) derivative. Chemosphere, 2002, 46, 485-488.	4.2	19
152	Chemical stability of esters of nicotinic acid intended for pulmonary administration by liquid ventilation. Pharmaceutical Research, 2003, 20, 918-925.	1.7	19
153	Cationic–anionic vesicle templating from fluorocarbon/fluorocarbon and hydrocarbon/fluorocarbon surfactants. Journal of Colloid and Interface Science, 2009, 338, 82-91.	5.0	19
154	Atropisomeric determination of chiral hydroxylated metabolites of polychlorinated biphenyls using HPLC-MS. Chemistry Central Journal, 2013, 7, 183.	2.6	19
155	Toxicity Evaluation of Exposure to an Atmospheric Mixture of Polychlorinated Biphenyls by Nose-Only and Whole-Body Inhalation Regimens. Environmental Science & Enp.; Technology, 2015, 49, 11875-11883.	4.6	19
156	Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice. Toxicological Sciences, 2020, 177, 168-187.	1.4	19
157	Combined Maternal Exposure to Cypermethrin and Stress Affect Embryonic Brain and Placental Outcomes in Mice. Toxicological Sciences, 2020, 175, 182-196.	1.4	19
158	Tailoring Porous Silica Films through Supercritical Carbon Dioxide Processing of Fluorinated Surfactant Templates. Journal of Physical Chemistry B, 2007, 111, 363-370.	1.2	18
159	Identification of lipidomic markers of chronic 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver. Toxicology, 2017, 390, 124-134.	2.0	18
160	Metabolism and Photolysis of 2,4-Dinitroanisole in <i>Arabidopsis</i> . Environmental Science & Environmental &	4.6	18
161	Comprehensive Subchronic Inhalation Toxicity Assessment of an Indoor School Air Mixture of PCBs. Environmental Science & Envir	4.6	18
162	The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats. Toxicology, 2007, 239, 147-155.	2.0	17

#	Article	IF	Citations
163	Synthesis, physicochemical properties and in vitro cytotoxicity of nicotinic acid ester prodrugs intended for pulmonary delivery using perfluorooctyl bromide as vehicle. International Journal of Pharmaceutics, 2008, 353, 35-44.	2.6	17
164	Effect of Dietary Selenium on the Promotion of Hepatocarcinogenesis by $3,3\hat{a}\in^2$, $4,4\hat{a}\in^2$ -Tetrachlorobiphenyl and $2,2\hat{a}\in^2$, $4,4\hat{a}\in^2$ -Hexachlorobiphenyl. Experimental Biology and Medicine, 2008, 233, 366-376.	1.1	17
165	Physicochemical properties of hydroxylated polychlorinated biphenyls aid in predicting their interactions with rat sulfotransferase 1A1 (rSULT1A1). Chemico-Biological Interactions, 2011, 189, 153-160.	1.7	17
166	Cytotoxic activity of triazole-containing alkyl \hat{l}^2 -D-glucopyranosides on a human T-cell leukemia cell line. Chemistry Central Journal, 2015, 9, 3.	2.6	17
167	Identification of a novel hydroxylated metabolite of 2,2′,3,5′,6-pentachlorobiphenyl formed in whole poplar plants. Environmental Science and Pollution Research, 2016, 23, 2089-2098.	2.7	17
168	Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mammalian Genome, 2018, 29, 112-127.	1.0	17
169	Large- and small-nanopore silica prepared with a short-chain cationic fluorinated surfactant. Nanotechnology, 2005, 16, S502-S507.	1.3	16
170	Direct Synthesis and Accessibility of Amine-Functionalized Mesoporous Silica Templated Using Fluorinated Surfactants. Industrial & Engineering Chemistry Research, 2011, 50, 5510-5522.	1.8	16
171	Association between urinary tin concentration and diabetes in nationally representative sample of US adults. Journal of Diabetes, 2018, 10, 977-983.	0.8	16
172	Assessment of Polychlorinated Biphenyls and Their Hydroxylated Metabolites in Postmortem Human Brain Samples: Age and Brain Region Differences. Environmental Science & Enviro	4.6	16
173	Regioselective iodination of chlorinated aromatic compounds using silver salts. Tetrahedron, 2011, 67, 7461-7469.	1.0	15
174	Subacute nicotine co-exposure has no effect on 2,2′,3,5′,6- pentachlorobiphenyl disposition but alters hepatic cytochrome P450 expression in the male rat. Toxicology, 2015, 338, 59-68.	2.0	15
175	Atropselective Oxidation of 2,2′,3,3′,4,6′-Hexachlorobiphenyl (PCB 132) to Hydroxylated Metabolites by Human Liver Microsomes and Its Implications for PCB 132 Neurotoxicity. Toxicological Sciences, 2019, 171, 406-420.	1.4	15
176	Nontarget analysis reveals gut microbiome-dependent differences in the fecal PCB metabolite profiles of germ-free and conventional mice. Environmental Pollution, 2021, 268, 115726.	3.7	15
177	New hydroxylated metabolites of 4-monochlorobiphenyl in whole poplar plants. Chemistry Central Journal, 2011, 5, 87.	2.6	14
178	Stable Isotope-Enabled Pathway Elucidation of 2,4-Dinitroanisole Metabolized by <i>Rhizobium lichtii</i> . Environmental Science and Technology Letters, 2015, 2, 362-366.	3.9	14
179	3,3′-Dichlorobiphenyl Is Metabolized to a Complex Mixture of Oxidative Metabolites, Including Novel Methoxylated Metabolites, by HepG2 Cells. Environmental Science & Technology, 2020, 54, 12345-12357.	4.6	14
180	Hydroxylated Polychlorinated Biphenyls Are Emerging Legacy Pollutants in Contaminated Sediments. Environmental Science & Envir	4.6	14

#	Article	IF	CITATIONS
181	Packing conflicts in the $Z\hat{a}\in \mathbb{C}^2=5$ structure of CF3(CF2)3(CH2)10COOH. Acta Crystallographica Section B: Structural Science, 2004, 60, 325-332.	1.8	13
182	ClcR-based biosensing system in the detection of cis-dihydroxylated (chloro-)biphenyls. Analytical and Bioanalytical Chemistry, 2006, 385, 807-813.	1.9	13
183	Atropisomers of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Environmental Science and Pollution Research, 2018, 25, 16411-16419.	2.7	13
184	Atropselective Partitioning of Polychlorinated Biphenyls in a HepG2 Cell Culture System: Experimental and Modeling Results. Environmental Science & Experimental	4.6	13
185	Association of Seafood Consumption and Mercury Exposure With Cardiovascular and All-Cause Mortality Among US Adults. JAMA Network Open, 2021, 4, e2136367.	2.8	13
186	Toxicity Assessment of 91-Day Repeated Inhalation Exposure to an Indoor School Air Mixture of PCBs. Environmental Science & En	4.6	13
187	Interaction of a partially fluorinated long-chain nicotinate with dipalmitoylphosphatidylcholine. Journal of Lipid Research, 2005, 46, 2415-2422.	2.0	12
188	Anti-inflammatory effects of perfluorocarbon compounds. Expert Review of Respiratory Medicine, 2008, 2, 273-289.	1.0	12
189	Electron ionization mass spectral fragmentation study of sulfation derivatives of polychlorinated biphenyls. Chemistry Central Journal, 2009, 3, 5.	2.6	12
190	Chlorinated Biphenyl Quinones and Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid Sulfotransferase hSULT2A1. Chemical Research in Toxicology, 2013, 26, 1474-1485.	1.7	12
191	Toxicokinetics of Chiral PCB 136 and Its Hydroxylated Metabolites in Mice with a Liver-Specific Deletion of Cytochrome P450 Reductase. Chemical Research in Toxicology, 2019, 32, 727-736.	1.7	12
192	Fatty liver and impaired hepatic metabolism alter the congener-specific distribution of polychlorinated biphenyls (PCBs) in mice with a liver-specific deletion of cytochrome P450 reductase. Environmental Pollution, 2020, 266, 115233.	3.7	12
193	2,4,4′-trichlorobiphenyl increases STAT5 transcriptional activity. Molecular Carcinogenesis, 2001, 30, 199-208.	1.3	11
194	Dietary Vitamin E Does Not Inhibit the Promotion of Liver Carcinogenesis by Polychlorinated Biphenyls in Rats. Journal of Nutrition, 2005, 135, 283-286.	1.3	11
195	Interaction of long-chain nicotinates with dipalmitoylphosphatidylcholine. Journal of Lipid Research, 2005, 46, 535-546.	2.0	11
196	Synthesis of Fluoro-Functionalized Mesoporous Silica and Application to Fluorophilic Separations. Industrial & Engineering Chemistry Research, 2008, 47, 530-538.	1.8	11
197	Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp Biodegradation, 2017, 28, 95-109.	1.5	11
198	Atropselective Disposition of 2,2′,3,4′,6-Pentachlorobiphenyl (PCB 91) and Identification of Its Metabolites in Mice with Liver-Specific Deletion of Cytochrome P450 Reductase. Chemical Research in Toxicology, 2020, 33, 1328-1338.	1.7	11

#	Article	lF	CITATIONS
199	Systematic review of human biomonitoring studies of ethylenethiourea, a urinary biomarker for exposure to dithiocarbamate fungicides. Environmental Pollution, 2022, 292, 118419.	3.7	11
200	Evaluation of Early Biomarkers of Atherosclerosis Associated with Polychlorinated Biphenyl Exposure: An <i>in Vitro</i> and <i>in Vivo</i> Study. Environmental Health Perspectives, 2022, 130, 37011.	2.8	11
201	Fluorinated surfactant templating of vinyl-functionalized nanoporous silica. Microporous and Mesoporous Materials, 2005, 85, 16-24.	2.2	10
202	Cytotoxic effects of polychlorinated biphenyl hydroquinone metabolites in rat hepatocytes. Journal of Applied Toxicology, 2010, 30, 163-171.	1.4	10
203	Binding interactions of hydroxylated polychlorinated biphenyls (OHPCBs) with human hydroxysteroid sulfotransferase hSULT2A1. Chemico-Biological Interactions, 2014, 212, 56-64.	1.7	10
204	Modulating inhibitors of transthyretin fibrillogenesis via sulfation: Polychlorinated biphenyl sulfates as models. Chemico-Biological Interactions, 2015, 228, 1-8.	1.7	10
205	Neonatal Exposure to BPA, BDE-99, and PCB Produces Persistent Changes in Hepatic Transcriptome Associated With Gut Dysbiosis in Adult Mouse Livers. Toxicological Sciences, 2021, 184, 83-103.	1.4	10
206	Supercritical Carbon Dioxide Processing of Fluorinated Surfactant Templated Mesoporous Silica Thin Films. Langmuir, 2005, 21, 6145-6149.	1.6	9
207	2,2′,3,4,4′,5,5′-Heptachlorobiphenyl (PCB 180). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2905-o2906.	0.2	9
208	PCB11 Metabolite, 3,3'-Dichlorobiphenyl-4-ol, Exposure Alters the Expression of Genes Governing Fatty Acid Metabolism in the Absence of Functional Sirtuin 3: Examining the Contribution of MnSOD. Antioxidants, 2018, 7, 121.	2.2	9
209	Evaluating the Role of the Steroid and Xenobiotic Receptor (SXR/PXR) in PCB-153 Metabolism and Protection against Associated Adverse Effects during Perinatal and Chronic Exposure in Mice. Environmental Health Perspectives, 2020, 128, 47011.	2.8	9
210	PCB Sulfates in Serum from Mothers and Children in Urban and Rural U.S. Communities. Environmental Science & Environmental Sci	4.6	9
211	Tricarbonyls: Reactive Model Dienophiles for Asymmetric Diels-Alder Reactions. Synthesis, 1996, 1996, 105-110.	1.2	8
212	Tumor promoting potency of PCBs 28 and 101 in rat liver. Toxicology Letters, 2006, 164, 133-143.	0.4	8
213	Pore size engineering in fluorinated surfactant templated mesoporous silica powders through supercritical carbon dioxide processing. Microporous and Mesoporous Materials, 2008, 113, 106-113.	2.2	8
214	Fluorophilicity of alkyl and polyfluoroalkyl nicotinic acid ester prodrugs. Journal of Fluorine Chemistry, 2010, 131, 784-790.	0.9	8
215	Fluorocarbon and hydrocarbon functional group incorporation into nanoporous silica employing fluorinated and hydrocarbon surfactants as templates. Microporous and Mesoporous Materials, 2010, 129, 189-199.	2.2	8
216	Improved syntheses of non-dioxin-like polychlorinated biphenyls (PCBs) and some of their sulfur-containing metabolites. Environment International, 2010, 36, 828-834.	4.8	8

#	Article	IF	Citations
217	Supercritical carbon dioxide swelling of fluorinated and hydrocarbon surfactant templates in mesoporous silica thin films. Journal of Colloid and Interface Science, 2012, 367, 183-192.	5.0	8
218	Effects of thiol antioxidants on the atropselective oxidation of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB) T	ETQq0 0	0 ggBT /Overl
219	Characterization of the Metabolic Pathways of 4-Chlorobiphenyl (PCB3) in HepG2 Cells Using the Metabolite Profiles of Its Hydroxylated Metabolites. Environmental Science & En	4.6	8
220	Interconversion between methoxylated, hydroxylated and sulfated metabolites of PCB 3 in whole poplar plants. Science of the Total Environment, 2021, 785, 147341.	3.9	8
221	Solubility enhancement of phenol and phenol derivatives in perfluorooctyl bromide. Journal of Pharmaceutical Sciences, 1998, 87, 1585-1589.	1.6	7
222	3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats. Toxicological Sciences, 2016, 152, 309-322.	1.4	7
223	Absolute configuration of 2,2′,3,3′,6-pentachlorinatedbiphenyl (PCB 84) atropisomers. Environmental Science and Pollution Research, 2018, 25, 16402-16410.	2.7	7
224	Levels of tin and organotin compounds in human urine samples from Iowa, United States. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 884-890.	0.9	7
225	Interfacial molecular imprinting of $St\tilde{A}\P$ ber particle surfaces: A simple approach to targeted saccharide adsorption. Journal of Colloid and Interface Science, 2014, 428, 101-110.	5.0	6
226	Sustained expression of CYPs and DNA adduct accumulation with continuous exposure to PCB126 and PCB153 through a new delivery method: Polymeric implants. Toxicology Reports, 2014, 1, 820-833.	1.6	6
227	A semi-target analytical method for quantification of OH-PCBs in environmental samples. Environmental Science and Pollution Research, 2020, 27, 8859-8871.	2.7	6
228	Benoxacor is enantioselectively metabolized by rat liver subcellular fractions. Chemico-Biological Interactions, 2020, 330, 109247.	1.7	6
229	Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity. Toxicological Sciences, 2021, 181, 246-261.	1.4	6
230	The Effects of Polychlorinated Biphenyl Exposure During Adolescence on the Nervous System: A Comprehensive Review. Chemical Research in Toxicology, 2021, 34, 1948-1952.	1.7	6
231	4′-Chlorobiphenyl-4-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2464-o2464.	0.2	6
232	Demixed Micelle Morphology Control in Hydrocarbon/Fluorocarbon Cationic Surfactant Templating of Mesoporous Silica. Journal of Physical Chemistry C, 2010, 114, 17390-17400.	1.5	5
233	Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls. Chemosphere, 2011, 85, 386-392.	4.2	5
234	Processing of Surfactant Templated Nano-Structured Silica Films Using Compressed Carbon Dioxide as Interpreted from In Situ Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 11646-11655.	1,2	5

#	Article	IF	Citations
235	Effective synthesis of sulfate metabolites of chlorinated phenols. Chemosphere, 2013, 93, 1965-1971.	4.2	5
236	Disposition of PCB 11 in Mice Following Acute Oral Exposure. Chemical Research in Toxicology, 2021, 34, 988-991.	1.7	5
237	1,3,5-Trichloro-2-methoxybenzene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, 0424-0424.	0.2	5
238	2,3,4′-Trichlorobiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o111-o112.	0.2	4
239	A Novel Synthesis of Branched High-molecular-weight (C40+) Long-chain Alkanes. Bioscience, Biotechnology and Biochemistry, 2002, 66, 523-531.	0.6	4
240	2,2′,3,3′,6-Pentachlorobiphenyl (PCB 84). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3025-o3026.	0.2	4
241	Unusual Dependence of Particle Architecture on Surfactant Concentration in Partially Fluorinated Decylpyridinium Templated Silica. Journal of Physical Chemistry B, 2005, 109, 23225-23232.	1.2	4
242	Synthesis and solid state structure of fluorous probe molecules for fluorous separation applications. Tetrahedron, 2010, 66, 2561-2569.	1.0	4
243	Biphenyl-4-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1073-o1073.	0.2	4
244	2,4-Dichloro-1-iodo-6-nitrobenzene. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o607-o607.	0.2	4
245	5,5′-Dichloro-2,2′-dimethoxybiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o650-o650.	0.2	4
246	Human hepatic microsomal sulfatase catalyzes the hydrolysis of polychlorinated biphenyl sulfates: A potential mechanism for retention of hydroxylated PCBs. Environmental Toxicology and Pharmacology, 2021, 88, 103757.	2.0	4
247	Maternal and fetal tissue distribution of α-cypermethrin and permethrin in pregnant CD-1 mice. Environmental Advances, 2022, 8, 100239.	2.2	4
248	4-Chloro-3′,4′-dihydroxybiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o590-o591.	0.2	3
249	$3\hat{a}$ €², $4\hat{a}$ €²-Dichlorobiphenyl-4-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1615-o1616.	0.2	3
250	The Effects of Benoxacor on the Liver and Gut Microbiome of C57BL/6 Mice. Toxicological Sciences, 2021, , .	1.4	3
251	The disposition of polychlorinated biphenyls (PCBs) differs between germ-free and conventional mice. Environmental Toxicology and Pharmacology, 2022, 92, 103854.	2.0	3
252	5-Fluoro-1-octanoyluracil. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, e518-e519.	0.4	2

#	Article	IF	CITATIONS
253	Fluorinated Surfactant Templating of Ordered Nanoporous Silica. Materials Research Society Symposia Proceedings, 2003, 775, 3181.	0.1	2
254	2,4,5-Trichlorobiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o1652-o1653.	0.2	2
255	2,5-Dichloro-4′-methoxybiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4162-o4163.	0.2	2
256	4-Bromo-2-chloro-1-methoxybenzene. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2091-o2092.	0.2	2
257	Partitioning of homologous nicotinic acid ester prodrugs (nicotinates) into dipalmitoylphosphatidylcholine (DPPC) membrane bilayers. Colloids and Surfaces B: Biointerfaces, 2010, 78, 75-84.	2.5	2
258	4′-Chlorobiphenyl-3-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2306-o2306.	0.2	2
259	Inverted Micelleâ€inâ€Micelle Configuration in Cationic/Carbohydrate Surfactant Mixtures. ChemPhysChem, 2017, 18, 79-86.	1.0	2
260	Tuning the position of head groups by surfactant design in mixed micelles of cationic and carbohydrate surfactants. Journal of Colloid and Interface Science, 2018, 512, 428-438.	5.0	2
261	Synthesis of mono- and dimethoxylated polychlorinated biphenyl derivatives starting from fluoroarene derivatives. Environmental Science and Pollution Research, 2020, 27, 8905-8925.	2.7	2
262	Role of Oil Vehicle on Hepatic Cell Proliferation in PCB-Treated Rats. Journal of Environmental Pathology, Toxicology and Oncology, 2011, 30, 273-282.	0.6	2
263	1-Bromo-4-chloro-2,5-dimethoxybenzene. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o339-o339.	0.2	2
264	3,3′,5,5′-Tetrabromo-4,4′-dihydroxybiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2828-o2830.	0.2	1
265	4-Chloro-2′,3′-dimethoxybiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3639-o3640.	0.2	1
266	Density Functional Theory Study of Semiquinone Radical Anions of Polychlorinated Biphenyls in the Syn- and Anti-like Conformation. Journal of Physical Chemistry A, 2012, 116, 1586-1595.	1.1	1
267	Imprinting of Stöber particles for chirally-resolved adsorption of target monosaccharides and disaccharides. New Journal of Chemistry, 2017, 41, 11525-11532.	1.4	1
268	Hundreds of Unrecognized Halogenated Contaminants Discovered in Polar Bear Serum. Angewandte Chemie, 2018, 130, 16639-16644.	1.6	1
269	1-Bromo-2-chloro-4,5-dimethoxybenzene. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o813-o813.	0.2	1
270	3,4′,5-Trichlorobiphenyl-4-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o620-o620.	0.2	1

#	Article	IF	Citations
271	Production of Fluorinated Surfactants by Electrochemical Fluorination. Surfactant Science, 2008, , 301-321.	0.0	1
272	5-Fluoro-1-(pentanoyl)pyrimidine-2,4(1H,3H)-dione. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o617-o617.	0.2	1
273	1-Bromo-2,3,6-trichloro-4,5-dimethoxybenzene. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o487-o487.	0.2	1
274	3,5-Dichloro-3′,4′-dimethoxybiphenyl. IUCrData, 2019, 4, .	0.1	1
275	2-(3,5-Dichlorophenyl)-1,4-benzoquinone. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, 0366-0367.	0.2	0
276	2,4,5-Trichloro-1-iodobenzene. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1048-o1049.	0.2	0
277	2,4,6-Trichloroiodobenzene. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1770-o1771.	0.2	0
278	2,2′,3,3′,6,6′-Hexachloro-5-nitro-1,1′-biphenyl (5-Nitro PCB 136). Acta Crystallographica Section E: St Reports Online, 2006, 62, o662-o663.	ructure 0.2	0
279	2,3,6-Trichloroiodobenzene. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4672-o4673.	0.2	0
280	Tetrakis (4-fluorophenyl) stannane. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m927-m928.	0.2	0
281	Tetrakis(2,4,5-trichlorophenyl)stannane. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1584-m1586.	0.2	0
282	2,2′,5′,6-Tetrachloro-4-[(1S)-1-methylpropoxy]biphenyl. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o983-o983.	0.2	0
283	Dose-Dependent Enantiomeric Enrichment of 2,2',3,3',6,6'-Hexachlorobiphenyl in Female Mice. Environmental Toxicology and Chemistry, 2007, preprint, 1.	2.2	0
284	5-Fluoro-1-(3-metylbutanoyl)pyrimidine-2,4(1H,3H)-dione. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o703-o703.	0.2	0
285	Neonatal Oral Exposure to Environmental Chemicals Produces Persistent Dysbiosis Corresponding to Hepatic Epigenetic Reprogramming in Adult Mice. FASEB Journal, 2019, 33, lb23.	0.2	0
286	2,3-Dichloro-3′,4′-dihydroxybiphenyl. IUCrData, 2019, 4, .	0.1	0
287	3-(3,5-Dichlorophenyl)benzene-1,2-diol. IUCrData, 2019, 4, .	0.1	0