James R Smiley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1994149/publications.pdf

Version: 2024-02-01

69 papers 9,503 citations

32 h-index 65 g-index

70 all docs

70 docs citations

times ranked

70

8471 citing authors

#	Article	IF	CITATIONS
1	Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. Journal of General Virology, 1977, 36, 59-72.	1.3	4,707
2	Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520, 553-557.	13.7	1,255
3	Herpes Simplex Virus Triggers and Then Disarms a Host Antiviral Response. Journal of Virology, 2001, 75, 750-758.	1.5	241
4	The Interferon Response Inhibits HIV Particle Production by Induction of TRIM22. PLoS Pathogens, 2008, 4, e1000007.	2.1	238
5	Construction and characterization of a recombinant plasmid encoding the gene for the thymidine kinase of herpes simplex type 1 virus. Gene, 1979, 7, 335-342.	1.0	217
6	Herpes Simplex Virus Virion Host Shutoff Protein: Immune Evasion Mediated by a Viral RNase?. Journal of Virology, 2004, 78, 1063-1068.	1.5	206
7	Herpes Simplex Virus ICPO Mutants Are Hypersensitive to Interferon. Journal of Virology, 2000, 74, 2052-2056.	1.5	191
8	Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell, 1985, 41, 793-802.	13.5	183
9	Construction of a double-jointed herpes simplex viral DNA molecule: Inverted repeats are required for segment inversion, and direct repeats promote deletions. Virology, 1981, 113, 345-362.	1.1	123
10	Herpes simplex virus eliminates host mitochondrial DNA. EMBO Reports, 2007, 8, 188-193.	2.0	121
11	Evidence that Herpes Simplex Virus VP16 Is Required for Viral Egress Downstream of the Initial Envelopment Event. Journal of Virology, 2000, 74, 6287-6299.	1.5	119
12	The Herpes Simplex Virus vhs Protein Induces Endoribonucleolytic Cleavage of Target RNAs in Cell Extracts. Journal of Virology, 1999, 73, 7153-7164.	1.5	116
13	Herpes Simplex Virus ICPO and ICP34.5 Counteract Distinct Interferon-Induced Barriers to Virus Replication. Journal of Virology, 2002, 76, 1995-1998.	1.5	102
14	Abundant expression of herpes simplex virus glycoprotein gB using an adenovirus vector. Virology, 1988, 164, 1-14.	1.1	95
15	Construction in vitro and rescue of a thymidine kinase-deficient deletion mutation of herpes simplex virus. Nature, 1980, 285, 333-335.	13.7	93
16	A herpes simplex virus 1 integration site in the mouse genome defined by somatic cell genetic analysis. Cell, 1978, 15, 455-468.	13.5	75
17	Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag. Retrovirology, 2011, 8, 95.	0.9	69
18	Herpes Simplex Virus Virion Host Shutoff Protein Is Stimulated by Translation Initiation Factors eIF4B and eIF4H. Journal of Virology, 2004, 78, 4684-4699.	1.5	68

#	Article	IF	CITATIONS
19	Genetic and physical evidence for the polarity of transcription of the thymidine kinase gene of herpes simplex virus. Virology, 1980, 102, 83-93.	1.1	65
20	Activation of RNA Polymerase III Transcription of Human Alu Elements by Herpes Simplex Virus. Virology, 1994, 202, 408-417.	1.1	61
21	The Herpes Simplex Virus 1 vhs Protein Enhances Translation of Viral True Late mRNAs and Virus Production in a Cell Type-Dependent Manner. Journal of Virology, 2011, 85, 5363-5373.	1.5	61
22	Picornavirus Internal Ribosome Entry Site Elements Target RNA Cleavage Events Induced by the Herpes Simplex Virus Virion Host Shutoff Protein. Journal of Virology, 1999, 73, 9222-9231.	1.5	57
23	Herpes Simplex Virus UL12.5 Targets Mitochondria through a Mitochondrial Localization Sequence Proximal to the N Terminus. Journal of Virology, 2009, 83, 2601-2610.	1.5	53
24	Activation of Expression of Multiple Subfamilies of HumanAluElements by Adenovirus Type 5 and Herpes Simplex Virus Type 1. Journal of Molecular Biology, 1995, 248, 513-524.	2.0	51
25	Control of VP16 Translation by the Herpes Simplex Virus Type 1 Immediate-Early Protein ICP27. Journal of Virology, 2005, 79, 4120-4131.	1.5	51
26	Truncation of the C-Terminal Acidic Transcriptional Activation Domain of Herpes Simplex Virus VP16 Renders Expression of the Immediate-Early Genes Almost Entirely Dependent on ICP0. Journal of Virology, 1999, 73, 9726-9733.	1.5	48
27	Herpes Simplex Virus Requires VP11/12 To Activate Src Family Kinase-Phosphoinositide 3-Kinase-Akt Signaling. Journal of Virology, 2011, 85, 2803-2812.	1.5	43
28	The Herpes Simplex Virus 1 Virion Host Shutoff Protein Enhances Translation of Viral Late mRNAs by Preventing mRNA Overload. Journal of Virology, 2014, 88, 9624-9632.	1.5	42
29	Herpes Simplex Virus VP16, but Not ICP0, Is Required To Reduce Histone Occupancy and Enhance Histone Acetylation on Viral Genomes in U2OS Osteosarcoma Cells. Journal of Virology, 2010, 84, 1366-1375.	1.5	41
30	Herpes Simplex Virus vhs Protein. Methods in Enzymology, 2001, 342, 440-451.	0.4	39
31	Herpes Simplex Virus Protein Kinases US3 and UL13 Modulate VP11/12 Phosphorylation, Virion Packaging, and Phosphatidylinositol 3-Kinase/Akt Signaling Activity. Journal of Virology, 2014, 88, 7379-7388.	1.5	38
32	Evidence for Translational Regulation by the Herpes Simplex Virus Virion Host Shutoff Protein. Journal of Virology, 2010, 84, 6041-6049.	1.5	34
33	Activation and inhibition of expression of the 72,000-da early protein of adenovirus type 5 in mouse cells constitutively expressing an immediate early protein of herpes simplex virus type 1. Virology, $1985, 144, 35-45$.	1.1	33
34	The Herpes Simplex Virus 2 Virion-Associated Ribonuclease vhs Interferes with Stress Granule Formation. Journal of Virology, 2014, 88, 12727-12739.	1.5	32
35	Herpes simplex virus regulatory proteins VP16 and ICPO counteract an innate intranuclear barrier to viral gene expression. Virology, 2006, 352, 237-252.	1.1	31
36	The Herpes Simplex Virus Virion Host Shutoff Protein Enhances Translation of Viral True Late mRNAs Independently of Suppressing Protein Kinase R and Stress Granule Formation. Journal of Virology, 2016, 90, 6049-6057.	1.5	31

#	Article	IF	Citations
37	Processing of α-Globin and ICPO mRNA in Cells Infected with Herpes Simplex Virus Type 1 ICP27 Mutants. Journal of Virology, 2000, 74, 7307-7319.	1.5	30
38	Herpes Simplex Virus ICP27 Is Required for Virus-Induced Stabilization of the ARE-Containing IEX-1 mRNA Encoded by the Human IER3 Gene. Journal of Virology, 2006, 80, 9720-9729.	1.5	29
39	Herpes Simplex Virus Virion Host Shutoff Protein Requires a Mammalian Factor for Efficient In Vitro Endoribonuclease Activity. Journal of Virology, 2001, 75, 1172-1185.	1.5	28
40	Functional inaccessibility of quiescent herpes simplex virus genomes. Virology Journal, 2005, 2, 85.	1.4	27
41	Elimination of Mitochondrial DNA Is Not Required for Herpes Simplex Virus 1 Replication. Journal of Virology, 2014, 88, 2967-2976.	1.5	26
42	Mitochondrial Nucleases ENDOG and EXOG Participate in Mitochondrial DNA Depletion Initiated by Herpes Simplex Virus 1 UL12.5. Journal of Virology, 2013, 87, 11787-11797.	1.5	24
43	Herpes Simplex Virus ICP27 Induces Cytoplasmic Accumulation of Unspliced Polyadenylated α-Globin Pre-mRNA in Infected HeLa Cells. Journal of Virology, 2000, 74, 2913-2919.	1.5	24
44	The vhs1 Mutant Form of Herpes Simplex Virus Virion Host Shutoff Protein Retains Significant Internal Ribosome Entry Site-Directed RNA Cleavage Activity. Journal of Virology, 2001, 75, 1072-1076.	1.5	23
45	Cell-Type-Specific Tyrosine Phosphorylation of the Herpes Simplex Virus Tegument Protein VP11/12 Encoded by Gene UL46. Journal of Virology, 2008, 82, 6098-6108.	1.5	22
46	RNA Degradation Induced by the Herpes Simplex Virus vhs Protein Proceeds $5\hat{a} \in \mathbb{Z}^2$ to $3\hat{a} \in \mathbb{Z}^2$ In Vitro. Journal of Virology, 2004, 78, 13391-13394.	1.5	21
47	Role of Herpes Simplex Virus VP11/12 Tyrosine-Based Motifs in Binding and Activation of the Src Family Kinase Lck and Recruitment of p85, Grb2, and Shc. Journal of Virology, 2013, 87, 11276-11286.	1.5	21
48	The herpes simplex virus host shutoff (vhs) RNase limits accumulation of double stranded RNA in infected cells: Evidence for accelerated decay of duplex RNA. PLoS Pathogens, 2019, 15, e1008111.	2.1	21
49	Single Amino Acid Differences between Closely Related Reovirus T3D Lab Strains Alter Oncolytic Potency <i>In Vitro</i> and <i>In Vivo</i> Journal of Virology, 2020, 94, .	1.5	21
50	Herpes Simplex Virus Requires VP11/12 To Induce Phosphorylation of the Activation Loop Tyrosine (Y394) of the Src Family Kinase Lck in T Lymphocytes. Journal of Virology, 2009, 83, 12452-12461.	1.5	20
51	Polymorphisms in the Most Oncolytic Reovirus Strain Confer Enhanced Cell Attachment, Transcription, and Single-Step Replication Kinetics. Journal of Virology, 2020, 94, .	1.5	20
52	Closely related reovirus lab strains induce opposite expression of RIG-I/IFN-dependent versus -independent host genes, via mechanisms of slow replication versus polymorphisms in dsRNA binding $If3$ respectively. PLoS Pathogens, 2020, 16, e1008803.	2.1	19
53	Herpes Simplex Virus Infection Stabilizes Cellular IEX-1 mRNA. Journal of Virology, 2005, 79, 4090-4098.	1.5	14
54	The XIAP IRES activates 3′ cistron expression by inducing production of monocistronic mRNA in the βgal/CAT bicistronic reporter system. Rna, 2009, 15, 1980-1985.	1.6	14

#	Article	IF	CITATIONS
55	Remodeling mTORC1 Responsiveness to Amino Acids by the Herpes Simplex Virus UL46 and Us3 Gene Products Supports Replication during Nutrient Insufficiency. Journal of Virology, 2018, 92, .	1.5	14
56	Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress. Journal of Virology, 2017, 91, .	1.5	13
57	Role of Herpes simplex virus 1 VP11/12 tyrosine-based binding motifs for Src family kinases, p85, Grb2 and Shc in activation of the phosphoinositide 3-kinase-Akt pathway. Virology, 2016, 498, 31-35.	1.1	11
58	Expression of herpesvirus thymidine kinase gene under control of early promoter of SV40. Virology, 1982, 117, 536-540.	1,1	10
59	Herpes simplex virus 1 infection of T cells causes VP11/12-dependent phosphorylation and degradation of the cellular protein Dok-2. Virology, 2017, 511, 66-73.	1,1	6
60	The herpes simplex virus type 1 immediate-early polypeptide ICP4 is required for expression of globin genes located in the viral genome. Virology, 1992, 190, 538-541.	1.1	4
61	Cell Fusion-Induced Activation of Interferon-Stimulated Genes Is Not Required for Restriction of a Herpes Simplex Virus VP16/ICPO Mutant in Heterokarya Formed between Permissive and Restrictive Cells. Journal of Virology, 2009, 83, 8976-8979.	1.5	3
62	Expression of the Vaccinia Virus Antiapoptotic F1 Protein Is Blocked by Protein Kinase R in the Absence of the Viral E3 Protein. Journal of Virology, 2018, 92, .	1.5	3
63	Organization and Control of the mRNA of the HSV TK Gene. , 1985, , 101-125.		2
64	Regulated expression of stably transfected herpes simplex virus thymidine kinase genes in continuous cell lines expressing a temperature-sensitive mutant form of the immediate-early protein ICP4. Virology, 1988, 162, 490-493.	1.1	1
65	Construction and preliminary characterization of a nondefective herpes simplex virus recombinant bearing the genome of human papillomavirus type 16. Canadian Journal of Microbiology, 1993, 39, 111-117.	0.8	1
66	Title is missing!. , 2020, 16, e1008803.		0
67	Title is missing!. , 2020, 16, e1008803.		O
68	Title is missing!. , 2020, 16, e1008803.		0
69	Title is missing!. , 2020, 16, e1008803.		O