Fanfei Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1993830/publications.pdf

Version: 2024-02-01

331670 434195 1,193 63 21 31 citations h-index g-index papers 63 63 63 831 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface. Applied Surface Science, 2016, 387, 308-316.	6.1	94
2	Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations. Applied Surface Science, 2017, 425, 996-1005.	6.1	55
3	Correlation of montmorillonite exfoliation with interlayer cations in the preparation of two-dimensional nanosheets. RSC Advances, 2017, 7, 41471-41478.	3.6	49
4	The adsorption of CaOH ⁺ on (001) basal and (010) edge surface of Na-montmorillonite: a DFT study. Surface and Interface Analysis, 2017, 49, 267-277.	1.8	49
5	Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chemical Physics Letters, 2019, 727, 31-37.	2.6	48
6	Adsorption of alkylamine cations on montmorillonite (001) surface: A density functional theory study. Applied Clay Science, 2018, 152, 249-258.	5.2	47
7	Hydrophobic agglomeration of colloidal kaolinite in aqueous suspensions with dodecylamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 281-286.	4.7	42
8	The adsorption of dodecylamine and oleic acid on kaolinite surfaces: Insights from DFT calculation and experimental investigation. Applied Surface Science, 2019, 470, 27-35.	6.1	38
9	Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions. Powder Technology, 2015, 283, 368-372.	4.2	34
10	Hydrophobic aggregation of fine particles in high muddied coal slurry water. Water Science and Technology, 2016, 73, 501-510.	2.5	33
11	Adsorption of different PAM structural units on kaolinite (0†0†1) surface: Density functional theory study. Applied Surface Science, 2020, 504, 144324.	6.1	32
12	Systematic exploration of the interactions between Fe-doped kaolinite and coal based on DFT calculations. Fuel, 2020, 266, 117082.	6.4	32
13	The flotation of aluminosilicate polymorphic minerals with anionic and cationic collectors. Minerals Engineering, 2016, 99, 123-132.	4.3	31
14	Atomic-level insights into the adsorption of rare earth Y(OH)3-nn+ (n = 1–3) ions on kaolinite surface. Applied Surface Science, 2019, 469, 357-367.	6.1	31
15	Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration. Jom, 2018, 70, 479-484.	1.9	26
16	Application of gaseous pyrolysis products of the waste cooking oil as coal flotation collector. Fuel, 2019, 239, 446-451.	6.4	26
17	Fundamental study on removal of organic sulfur from coal by microwave irradiation. International Journal of Mineral Processing, 2015, 139, 31-35.	2.6	25
18	Effect of pores on the flotation of low-rank coal: An experiment and simulation study. Fuel, 2020, 271, 117557.	6.4	25

#	Article	IF	CITATIONS
19			

#	Article	IF	Citations
37	Insights into the influence mechanism of Mg2+ doping on hydration activity of kaolinite surface: A DFT calculation. Chemical Physics, 2022, 560, 111576.	1.9	12
38	Mechanism of hydrolyzable metal ions effect on the zeta potential of fine quartz particles. Journal of Dispersion Science and Technology, 2018, 39, 298-304.	2.4	11
39	Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study. Environmental Pollution, 2022, 302, 119107.	7.5	11
40	Experiments and CFD-DEM simulations of fine kaolinite particle sedimentation dynamic characteristics in a water environment. Powder Technology, 2021, 382, 60-69.	4.2	10
41	The Dielectric Properties of Thiophene Model Compounds: Insights for Microwave Desulfurization of Coking Coal. Energy &	5.1	10
42	Microstructural characterization and mechanical property of Fly Ash/Al-25Mg composites. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1019-1022.	1.0	9
43	Improving Coal Flotation by Gaseous Collector Pretreatment Method and its Potential Application in Preparing Coal Water Slurry. Processes, 2019, 7, 500.	2.8	9
44	Effect of Hydration Layer on the Adsorption of Dodecane Collector on Low-Rank Coal: A Molecular Dynamics Simulation Study. Processes, 2020, 8, 1207.	2.8	9
45	Microstructure and thermo-mechanical properties of SiCp/Al composites prepared by pressureless infiltration. Journal of Materials Science: Materials in Electronics, 2013, 24, 1937-1940.	2.2	8
46	Promotion of Coal Slime Water Sedimentation and Filtration via Hydrophobic Coagulation. International Journal of Coal Preparation and Utilization, 2021, 41, 815-829.	2.1	8
47	Study on Hydration of Illite in K ⁺ , Na ⁺ , Ca ²⁺ , Mg ²⁺ , and Al ³⁺ Electrolyte Solutions. Zeitschrift Fur Physikalische Chemie, 2019, 233, 721-735.	2.8	8
48	Study on the aggregation behavior of kaolinite particles in the presence of cationic, anionic and non-ionic surfactants. PLoS ONE, 2018, 13, e0204037.	2.5	7
49	Effect of inorganic cations on enhancing graphite/kerosene adsorption and reducing carbon emission in graphite flotation. Fuel, 2022, 314, 122740.	6.4	7
50	CHARACTERIZATIONS AND STABILITY OF COLLOIDAL COAL-MEASURE KAOLINITE IN AQUEOUS SUSPENSIONS: A REVIEW. Surface Review and Letters, 2013, 20, 1330001.	1.1	6
51	Hydration Layers on Clay Mineral Surfaces in Aqueous Solutions: a Review/Warstwy Uwodnione Na Powierzchni MineraÅ,ów llastych W Roztworach Wodnych: PrzeglÄ…d. Archives of Mining Sciences, 2014, 59, 489-500.	0.6	6
52	Facile synthesis and enhanced microwave absorption properties of anthracite-based carbon/Ni ₃ Fe/NiO ternary composites. New Journal of Chemistry, 2020, 44, 13962-13970.	2.8	6
53	Extraction of Nano-α-Al ₂ O ₃ and SiO ₂ from Fly Ash at Low Temperature Conditions. Integrated Ferroelectrics, 2013, 147, 8-16.	0.7	3
54	A NOVEL METHOD FOR THE DETERMINATION OF THE POINT OF ZERO NET PROTON CHARGE OF COLLOIDAL KAOLINITE IN AQUEOUS SOLUTIONS. Surface Review and Letters, 2016, 23, 1650023.	1.1	3

#	Article	IF	Citations
55	Electronic structural properties of BiOF crystal and its oxygen vacancy from first-principles calculations. Russian Journal of Physical Chemistry A, 2017, 91, 2425-2430.	0.6	3
56	Density Functional Theory Analysis of the Adsorption Interactions of Carbon Impurities in Coal-associated Kaolinite. Processes, 2019, 7, 782.	2.8	3
57	Facile Synthesis of Ternary TiO2/Polyaniline/Graphene Composites with Enhanced Photocatalytic Performance towards Organic Dyes Removal. Russian Journal of Physical Chemistry A, 2021, 95, 1745-1755.	0.6	3
58	Investigation for Reaction Mechanism of Nano-Silica-Modified Cement-Based Composite Materials. Integrated Ferroelectrics, 2011, 129, 160-168.	0.7	2
59	Adsorption of Cr(OH)n(3â^n)+ (n = 1 â \in "3) on Illite (001) and (010) Surfaces: A DFT Study. Processes, 2021, 9, 2048.	2.8	2
60	Effect of Zn2+ content on the microstructure and magnetic properties of nanocrystalline Ni1 \hat{a} 'x Zn x Fe2O4 ferrite by a spraying-coprecipitation method. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 429-431.	1.0	1
61	Research of reagent interaction on induction time during bubble–particle interaction. International Journal of Coal Preparation and Utilization, 0, , 1-17.	2.1	1
62	THE APPLICATION PROSPECT OF MICROCANTILEVER SENSORS TECHNOLOGY ON MINERAL SURFACE ADSORPTION. Surface Review and Letters, 2019, 26, 1830010.	1.1	0
63	Study on bubble penetrating solution/frother interface in the presence of ions. Powder Technology, 2022, 398, 117139.	4.2	0