Gregory Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/199365/publications.pdf

Version: 2024-02-01

		687363	996975	
15	3,418	13	15	
papers	citations	h-index	g-index	
1.5	1.5	1.5	F2.42	
15	15	15	5242	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 128.	4.5	16
2	Data-driven Stellar Models. Astrophysical Journal, 2021, 907, 57.	4. 5	6
3	Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints Including the Impact of the Large Magellanic Cloud. Astrophysical Journal, 2020, 893, 48.	4.5	101
4	A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition. Astrophysical Journal, 2019, 879, 125.	4.5	183
5	Overview of the DESI Legacy Imaging Surveys. Astronomical Journal, 2019, 157, 168.	4.7	825
6	Modeling the Connection between Subhalos and Satellites in Milky Way–like Systems. Astrophysical Journal, 2019, 873, 34.	4.5	55
7	The unWISE Catalog: Two Billion Infrared Sources from Five Years of <i>WISE</i> Imaging. Astrophysical Journal, Supplement Series, 2019, 240, 30.	7.7	182
8	A 3D Dust Map Based on Gaia, Pan-STARRS 1, and 2MASS. Astrophysical Journal, 2019, 887, 93.	4.5	681
9	A Color-locus Method for Mapping R _V Using Ensembles of Stars. Astrophysical Journal, 2018, 854, 79.	4.5	2
10	Mapping Distances across the Perseus Molecular Cloud Using CO Observations, Stellar Photometry, and Gaia DR2 Parallax Measurements. Astrophysical Journal, 2018, 869, 83.	4.5	78
11	Galactic reddening in 3D from stellar photometry – an improved map. Monthly Notices of the Royal Astronomical Society, 2018, 478, 651-666.	4.4	337
12	dustmaps: A Python interface for maps of interstellar dust. Journal of Open Source Software, 2018, 3, 695.	4.6	255
13	THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY. Astrophysical Journal, 2016, 821, 78.	4.5	185
14	A THREE-DIMENSIONAL MAP OF MILKY WAY DUST. Astrophysical Journal, 2015, 810, 25.	4.5	408
15	CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE. Astrophysical Journal, 2015, 812, 128.	4.5	104