
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1993260/publications.pdf Version: 2024-02-01

CHRISTORHE RENCOA

#	Article	IF	CITATIONS
1	Extraction of cellulose from corn stover using designed ionic liquids with improved reusing capabilities. Chemical Engineering Research and Design, 2021, 147, 181-191.	5.6	28
2	Data-driven techniques for fault detection in anaerobic digestion process. Chemical Engineering Research and Design, 2021, 146, 905-915.	5.6	53
3	ATR-FTIR Spectroscopy Combined with Multivariate Analysis Successfully Discriminates Raw Doughs and Baked 3D-Printed Snacks Enriched with Edible Insect Powder. Foods, 2021, 10, 1806.	4.3	6
4	Moving municipal WWTP towards circular economy: Cellulose recovery from primary sludge with ionic liquid. Resources, Conservation and Recycling, 2020, 154, 104626.	10.8	19
5	Valorization of Cellulose Recovered from WWTP Sludge to Added Value Levulinic Acid with a BrÃ _s nsted Acidic Ionic Liquid. Catalysts, 2020, 10, 1004.	3.5	16
6	Fault detection and diagnosis in water resource recovery facilities using incremental PCA. Water Science and Technology, 2020, 82, 2711-2724.	2.5	12
7	Robust Data-Driven Soft Sensors for Online Monitoring of Volatile Fatty Acids in Anaerobic Digestion Processes. Processes, 2020, 8, 67.	2.8	30
8	Data-driven fault detection methods for detecting small-magnitude faults in anaerobic digestion process. Water Science and Technology, 2020, 81, 1740-1748.	2.5	12
9	Separation of cellulose from industrial paper mill wastewater dried sludge using a commercial and cheap ionic liquid. Water Science and Technology, 2019, 79, 1897-1904.	2.5	7
10	Recovery and characterisation of cellulose from industrial paper mill sludge using tetrakis and imidazolium based ionic liquids. Industrial Crops and Products, 2019, 139, 111556.	5.2	8
11	Enhanced Degradation of Phenol by a Fenton-Like System (Fe/EDTA/H2O2) at Circumneutral pH. Catalysts, 2019, 9, 474.	3.5	34
12	Zero-valent iron supported on nitrogen-doped carbon xerogel as catalysts for the oxidation of phenol by fenton-like system. Environmental Technology (United Kingdom), 2018, 39, 2951-2958.	2.2	19
13	Fast Aqueous Biodegradation of Highly-Volatile Organic Compounds in a Novel Anaerobic Reaction Setup. Environments - MDPI, 2018, 5, 115.	3.3	4
14	Nitrate removal in an innovative up-flow stirred packed-bed bioreactor. Chemical Engineering and Processing: Process Intensification, 2017, 121, 57-64.	3.6	10
15	How the contents of a bachelor's degree final project of engineering evolve towards innovative scientific knowledge: Keys to success. Journal of Technology and Science Education, 2017, 7, 241.	1.2	1
16	Energy and Nutrients Recovery from Lipid-Extracted Nannochloropsis via Anaerobic Digestion and Hydrothermal Liquefaction. ACS Sustainable Chemistry and Engineering, 2016, 4, 3133-3139.	6.7	19
17	Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge. Bioresource Technology, 2016, 214, 122-131.	9.6	63
18	Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents. Bioresource Technology, 2016, 214, 404-410.	9.6	52

#	Article	IF	CITATIONS
19	Synthesis of N-doped and non-doped partially oxidised graphene membranes supported over ceramic materials. Journal of Materials Science, 2016, 51, 8346-8360.	3.7	13
20	Effect of pre-treatments on the production of biofuels from Phaeodactylum tricornutum. Journal of Environmental Management, 2016, 177, 240-246.	7.8	17
21	Catalytic wet peroxide oxidation of phenol using nanoscale zero-valent iron supported on activated carbon. Desalination and Water Treatment, 2016, 57, 5155-5164.	1.0	14
22	A novel pre-treatment for the methane production from microalgae by using N-methylmorpholine-N-oxide (NMMO). Bioresource Technology, 2016, 201, 370-373.	9.6	11
23	Evaluation of different strategies to produce biofuels from Nannochloropsis oculata and Chlorella vulgaris. Fuel Processing Technology, 2016, 144, 132-138.	7.2	10
24	Biodiesel production from sewage sludge lipids catalysed by BrÃ,nsted acidic ionic liquids. Applied Catalysis B: Environmental, 2016, 181, 738-746.	20.2	93
25	Anaerobic Digestion of Microalgae: The Benefits of Digesting Microalgae Waste. Current Biochemical Engineering, 2016, 3, 210-222.	1.3	3
26	Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research, 2015, 10, 232-239.	4.6	160
27	New sludge-based carbonaceous materials impregnated with different metals for anaerobic azo-dye reduction. Journal of Environmental Chemical Engineering, 2015, 3, 104-112.	6.7	5
28	A novel recovery process for lipids from microalgæ for biodiesel production using a hydrated phosphonium ionic liquid. Green Chemistry, 2015, 17, 2813-2824.	9.0	81
29	TiO2-sludge carbon enhanced catalytic oxidative reaction in environmental wastewaters applications. Journal of Hazardous Materials, 2015, 300, 406-414.	12.4	15
30	Biodegradation of acid orange 7 in an anaerobic–aerobic sequential treatment system. Chemical Engineering and Processing: Process Intensification, 2015, 94, 99-104.	3.6	24
31	A potential application of sludge-based catalysts for the anaerobic bio-decolorization of tartrazine dye. Environmental Technology (United Kingdom), 2015, 36, 2568-2576.	2.2	4
32	Efficient extraction of lipids from primary sewage sludge using ionic liquids for biodiesel production. Separation and Purification Technology, 2015, 153, 118-125.	7.9	38
33	Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol. Catalysis Today, 2015, 240, 73-79.	4.4	40
34	Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions. Renewable Energy, 2015, 75, 374-380.	8.9	88
35	Effects of pre-treatments on the lipid extraction and biodiesel production from municipal WWTP sludge. Fuel, 2015, 141, 250-257.	6.4	52
36	Efficient elimination of tyrosol in a zero valent iron-EDTA system at mild conditions. Chemical Engineering Journal, 2015, 260, 199-208.	12.7	8

#	Article	IF	CITATIONS
37	Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II. Journal of Hazardous Materials, 2014, 267, 21-30.	12.4	37
38	Fenton coupled with nanofiltration for elimination of Bisphenol A. Desalination, 2014, 345, 77-84.	8.2	35
39	Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2014, 154-155, 329-338.	20.2	74
40	Direct liquid–liquid extraction of lipid from municipal sewage sludge for biodiesel production. Fuel Processing Technology, 2014, 128, 331-338.	7.2	85
41	Heterogenization of copper catalyst for the oxidation of phenol, a common contaminant in industrial wastewater. Environmental Progress and Sustainable Energy, 2013, 32, 269-278.	2.3	7
42	Evaluation of Different Sludges from WWTP as a Potential Source for Biodiesel Production. Procedia Engineering, 2012, 42, 634-643.	1.2	62
43	Phenol Degradation by Heterogeneous Fenton-Like Reaction Using Fe Supported Over Activated Carbon. Procedia Engineering, 2012, 42, 1373-1377.	1.2	21
44	Fenton Coupled with Nanoflitration for Elimination of Tartrazine. Procedia Engineering, 2012, 44, 1781-1782.	1.2	0
45	Extraction and purification of hydrolytic enzymes from activated sludge. Resources, Conservation and Recycling, 2012, 59, 9-13.	10.8	30
46	Degradation of model olive mill contaminants of OMW catalysed by zero-valent iron enhanced with a chelant. Journal of Hazardous Materials, 2012, 199-200, 328-335.	12.4	17
47	Sewage sludge based carbons for catalytic wet air oxidation of phenolic compounds in batch and trickle bed reactors. Applied Catalysis B: Environmental, 2011, 110, 81-89.	20.2	48
48	Heat transfer in trickle bed column with constant and modulated feed temperature: Experiments and modeling. Chemical Engineering Science, 2011, 66, 3358-3368.	3.8	13
49	Sewage sludge based catalysts for catalytic wet air oxidation of phenol: Preparation, characterisation and catalytic performance. Applied Catalysis B: Environmental, 2011, 101, 306-316.	20.2	88
50	Tailored activated carbons as catalysts in biodecolourisation of textile azo dyes. Applied Catalysis B: Environmental, 2010, 94, 179-185.	20.2	46
51	Immobilisation of horseradish peroxidase on Eupergit®C for the enzymatic elimination of phenol. Journal of Hazardous Materials, 2010, 177, 990-1000.	12.4	49
52	Hydrolytic enzymes in activated sludge: Extraction of protease and lipase by stirring and ultrasonication. Ultrasonics Sonochemistry, 2010, 17, 923-931.	8.2	47
53	Synthesis of polymer-supported copper complexes and their evaluation in catalytic phenol oxidation. Catalysis Today, 2010, 157, 66-70.	4.4	28
54	Performance of Trickle Bed Reactor and Active Carbon in the Liquid Phase Oxidation of Phenol. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	0

#	Article	IF	CITATIONS
55	Performance of Sludge Based Activated Carbons in Catalytic Wet Air Oxidation of Phenol. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	2
56	Ferrous Ion Effects on the Stability and Properties of Oil-in-Water Emulsions Formulated by Membrane Emulsification. Industrial & Engineering Chemistry Research, 2010, 49, 3818-3829.	3.7	12
57	Optimisation of a torus reactor geometry using CFD. Computer Aided Chemical Engineering, 2009, 26, 701-705.	0.5	Ο
58	Non-enhanced ultrafiltration of iron(III) with commercial ceramic membranes. Journal of Membrane Science, 2009, 334, 129-137.	8.2	23
59	Supported Cu(II) polymer catalysts for aqueous phenol oxidation. Journal of Hazardous Materials, 2009, 163, 809-815.	12.4	39
60	Advanced Bioreduction of Commercially Important Azo Dyes: Modeling and Correlation with Electrochemical Characteristics. Industrial & Engineering Chemistry Research, 2009, 48, 7054-7059.	3.7	17
61	Mixing and hydrodynamics investigation using CFD in a square-sectioned torus reactor in batch and continuous regimes. Chemical Engineering Journal, 2008, 137, 386-395.	12.7	15
62	Recovery of iron (III) from aqueous streams by ultrafiltration. Desalination, 2008, 221, 413-418.	8.2	20
63	Novel bioreactor design for decolourisation of azo dye effluents. Chemical Engineering Journal, 2008, 143, 293-298.	12.7	36
64	Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina. Journal of Volcanology and Geothermal Research, 2008, 174, 284-294.	2.1	30
65	Extraction of enzymes from activated sludge. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	2
66	Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment. Water Science and Technology, 2007, 55, 221-227.	2.5	29
67	Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure. Chemosphere, 2007, 68, 338-344.	8.2	59
68	Effective Anaerobic Decolorization of Azo Dye Acid Orange 7 in Continuous Upflow Packed-Bed Reactor Using Biological Activated Carbon System. Industrial & Engineering Chemistry Research, 2007, 46, 6788-6792.	3.7	87
69	Biodegradability enhancement of phenolic compounds by Hydrogen Peroxide Promoted Catalytic Wet Air Oxidation. Catalysis Today, 2007, 124, 191-197.	4.4	27
70	Gas feed composition modulation in phenol CWAO over active carbon. Chemical Engineering Science, 2007, 62, 5564-5566.	3.8	7
71	Effect of gas feed flow and gas composition modulation on activated carbon performance in phenol wet air oxidation. Chemical Engineering Science, 2007, 62, 7351-7358.	3.8	12
72	Casein hydrolysis by immobilized enzymes in a torus reactor. Process Biochemistry, 2005, 40, 461-467.	3.7	18

#	Article	IF	CITATIONS
73	Chemical Wet Oxidation for the Abatement of Refractory Non-Biodegradable Organic Wastewater Pollutants. Chemical Engineering Research and Design, 2005, 83, 371-380.	5.6	33
74	Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics in Catalysis, 2005, 33, 3-50.	2.8	160
75	Characterization and Modeling of the Hydrodynamic Behavior in the Filter-Press-Type FM01-LC Electrochemical Cell by Direct Flow Visualization and Residence Time Distribution. Industrial & Engineering Chemistry Research, 2000, 39, 2199-2206.	3.7	40
76	Water pollution abatement by catalytic wet air oxidation in a trickle bed reactor. Catalysis Today, 1999, 53, 107-114.	4.4	119
77	Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 1999, 64, 181-193.	12.4	84
78	Aqueous phase catalytic oxidation of phenol in a trickle bed reactor: effect of the pH. Water Research, 1999, 33, 1005-1013.	11.3	50
79	Influence des catalyseurs hétérogènes sur le coprocessing d'un lignite du Berguedà avec un résidu de distillation sous vide. Oil & Gas Science & Technology, 1997, 52, 61-71.	0.2	1
80	Flow visualization and modelling of a filter-press type electrochemical reactor. Journal of Applied Electrochemistry, 1997, 27, 1313-1322.	2.9	39
81	Performance of Different Catalysts on the Coprocessing of a Demineralized Catalan Lignite. Energy & Fuels, 1996, 10, 679-683.	5.1	4
82	Influence of type of vacuum residue on the catalytic coprocessing of a demineralized Catalan lignite. Fuel, 1996, 75, 1327-1330.	6.4	1
83	Coprocessing of Berguedà lignite with vacuum residue under increasing hydrogen pressure comparison with hydrotreating. Fuel, 1995, 74, 1704-1708.	6.4	8
84	Catalytic removal of phenol from aqueous phase using oxygen or air as oxidant. Catalysis Today, 1995, 24, 79-83.	4.4	81
85	Influence of temperature and hydrogen partial pressure on the coprocessing of two Spanish lignites with a vacuum residue. Fuel, 1992, 71, 1169-1175.	6.4	11