Yu Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1993181/yu-wang-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

48 11,075 95 323 h-index g-index citations papers 6.14 12,083 4.8 330 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
323	Superparamagnetic Colloids: Controlled Synthesis and Niche Applications. <i>Advanced Materials</i> , 2007 , 19, 33-60	24	813
322	Large electrocaloric effect in ferroelectric polymers near room temperature. <i>Science</i> , 2008 , 321, 821-3	33.3	813
321	Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. <i>Nature Communications</i> , 2016 , 7, 11204	17.4	679
320	WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8525		437
319	Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. <i>Applied Physics Letters</i> , 2009 , 95, 063302	3.4	368
318	Magnetoelectric CoFe2O4 P b(Zr,Ti)O3 composite thin films derived by a sol-gel process. <i>Applied Physics Letters</i> , 2005 , 86, 122501	3.4	265
317	Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 4720-4724	11.5	207
316	Hydrogen induced metallicity on the ZnO(1010) surface. <i>Physical Review Letters</i> , 2005 , 95, 266104	7.4	183
315	Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. <i>ACS Applied Materials & Description</i> (2015), 7, 13512-7	9.5	148
314	Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. <i>Nature Communications</i> , 2016 , 7, 12206	17.4	147
313	Giant Electric Energy Density in Epitaxial Lead-Free Thin Films with Coexistence of Ferroelectrics and Antiferroelectrics. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500052	6.4	141
312	Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. <i>Advanced Materials</i> , 2011 , 23, 5624-8	24	133
311	Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors. <i>Small</i> , 2016 , 12, 5000-500	0711	132
310	Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures. <i>Advanced Materials</i> , 2012 , 24, 1729-35	24	125
309	Large magnetostriction from morphotropic phase boundary in ferromagnets. <i>Physical Review Letters</i> , 2010 , 104, 197201	7.4	121
308	Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. <i>Energy and Environmental Science</i> , 2012 , 5, 9881	35.4	119
307	Epitaxial ferroelectric Pb(Zr, Ti)O3 thin films on Si using SrTiO3 template layers. <i>Applied Physics Letters</i> , 2002 , 80, 97-99	3.4	117

(2017-2010)

306	Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. <i>Sensors and Actuators B: Chemical</i> , 2010 , 147, 531-538	8.5	116	
305	Microfluidic reactors for photocatalytic water purification. <i>Lab on A Chip</i> , 2014 , 14, 1074-82	7.2	112	
304	Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces. <i>Applied Physics Letters</i> , 2012 , 100, 232904	3.4	107	
303	Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries. <i>Advanced Materials</i> , 2015 , 27, 5936-42	24	106	
302	Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant {111}c Facets. <i>Crystal Growth and Design</i> , 2011 , 11, 1049-1053	3.5	106	
301	Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO3 thin films. <i>Journal of Applied Physics</i> , 2007 , 101, 114105	2.5	105	
300	Processing and properties of Yb-doped BiFeO3 ceramics. <i>Applied Physics Letters</i> , 2007 , 91, 082906	3.4	100	
299	Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 4526-4532	6.7	96	
298	Laser-induced thermal bubbles for microfluidic applications. <i>Lab on A Chip</i> , 2011 , 11, 1389-95	7.2	96	
297	Advances and prospects of fiber supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20863-208	7913	92	
296	Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. <i>Electrochimica Acta</i> , 2016 , 211, 411-419	6.7	91	
295	Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. <i>Lab on A Chip</i> , 2009 , 9, 2981-6	7.2	90	
294	Highly Responsive Room-Temperature Hydrogen Sensing of MoOlNanoribbon Membranes. <i>ACS Applied Materials & Applied & </i>	9.5	89	
293	A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14963-14970	13	88	
292	Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. <i>Scientific Reports</i> , 2013 , 3, 2215	4.9	88	
291	Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics. <i>Materials Letters</i> , 2005 , 59, 1649-1652	3.3	86	
290	Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. <i>Nature Communications</i> , 2018 , 9, 2889	17.4	85	
289	High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO core-shell nanofibers for dye decomposition. <i>Chemosphere</i> , 2017 , 183, 528-535	8.4	76	

288	ZnO-based film bulk acoustic resonator for high sensitivity biosensor applications. <i>Applied Physics Letters</i> , 2007 , 90, 143503	3.4	66
287	Engineering Nanostructured Bi2WO6IIiO2 Toward Effective Utilization of Natural Light in Photocatalysis. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 4157-4161	3.8	64
286	Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors. Journal of Materials Chemistry A, 2016 , 4, 14781-14788	13	62
285	Gas-Sensing Properties of Perovskite BiFeO3 Nanoparticles. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 3105-3107	3.8	60
284	Determination of the strain dependence of resistance in La0.7Sr0.3MnO3PMNPT using the converse piezoelectric effect. <i>Physical Review B</i> , 2007 , 75,	3.3	60
283	Flexoelectric materials and their related applications: A focused review. <i>Journal of Advanced Ceramics</i> , 2019 , 8, 153-173	10.7	58
282	Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application. <i>Applied Catalysis A: General</i> , 2006 , 305, 54-63	5.1	57
281	Electrospinning Preparation and Photoluminescence Properties of Lanthanum Phosphate Nanowires and Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9609-9615	3.8	56
280	Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-6	3.2	55
279	Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. <i>Surface and Coatings Technology</i> , 2010 , 204, 1206-1210	4.4	53
278	Controllable Hydrothermal Synthesis of KTa1NbxO3Nanostructures with Various Morphologies and Their Growth Mechanisms. <i>Crystal Growth and Design</i> , 2008 , 8, 832-837	3.5	53
277	Piezoelectric Nanowires in Energy Harvesting Applications. <i>Advances in Materials Science and Engineering</i> , 2015 , 2015, 1-21	1.5	50
276	Preparation and characterization of hafnium doped barium titanate ceramics. <i>Journal of Alloys and Compounds</i> , 2007 , 431, 197-202	5.7	50
275	Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4934-4940	13	48
274	Novel gas sensoring materials based on CuS hollow spheres. <i>Microporous and Mesoporous Materials</i> , 2009 , 118, 423-426	5.3	47
273	Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature. <i>Nanoscale Research Letters</i> , 2011 , 6, 466	5	43
272	Low-temperature facile solution-processed gate dielectric for combustion derived oxide thin film transistors. <i>RSC Advances</i> , 2014 , 4, 54729-54739	3.7	42
271	Hydrothermal growth and optical properties of Nb2O5 nanorod arrays. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8185-8190	7.1	42

(2006-2014)

270	Nanocomposite of BiPO4 and reduced graphene oxide as an efficient photocatalyst for hydrogen evolution. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 13527-13533	6.7	42	
269	Enhanced in-plane ferroelectricity in Ba0.7Sr0.3TiO3 thin films grown on MgO (001) single-crystal substrate. <i>Applied Physics Letters</i> , 2005 , 86, 212904	3.4	42	
268	Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 3665-70	9.5	41	
267	Direct observation of charge order and an orbital glass state in multiferroic LuFe2O4. <i>Physical Review Letters</i> , 2009 , 103, 077602	7.4	41	
266	Effects of electrochemical hydrogen charging on lead-based relaxor ferroelectric multilayer ceramic capacitors. <i>Journal of Materials Research</i> , 1998 , 13, 1110-1112	2.5	41	
265	Ultrahigh Tunability of Room Temperature Electronic Transport and Ferromagnetism in Dilute Magnetic Semiconductor and PMN-PT Single-Crystal-Based Field Effect Transistors via Electric Charge Mediation. <i>Advanced Functional Materials</i> , 2015 , 25, 1111-1119	15.6	40	
264	Piezostrain-enhanced photovoltaic effects in BiFeO 3 /La 0.7 Sr 0.3 MnO 3 /PMN B T heterostructures. <i>Nano Energy</i> , 2015 , 18, 315-324	17.1	39	
263	Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers. <i>Materials Research Bulletin</i> , 2013 , 48, 1213-1217	5.1	39	
262	Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. <i>Nanoscale</i> , 2012 , 4, 448-50	7.7	39	
261	Optofluidic microcavities: Dye-lasers and biosensors. <i>Biomicrofluidics</i> , 2010 , 4, 043002	3.2	39	
260	Ferroelectric poling and converse-piezoelectric-effect-induced strain effects in La0.7Ba0.3MnO3 thin films grown on ferroelectric single-crystal substrates. <i>Physical Review B</i> , 2009 , 79,	3.3	39	
259	Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions. Journal of Solid State Chemistry, 2005 , 178, 279-284	3.3	39	
258	Hot-pressed K0.48Na0.52Nb1\(\text{BixO3}\) (x=0.05\(\text{D}\).15) lead-free ceramics for electro-optic applications. <i>Materials Chemistry and Physics</i> , 2011 , 131, 320-324	4.4	38	
257	Hydrogen Impurity Defects in Rutile TiO2. Scientific Reports, 2015 , 5, 17634	4.9	37	
256	Hydrogen: A metastable donor in TiO2 single crystals. <i>Applied Physics Letters</i> , 2008 , 92, 112907	3.4	37	
255	Effects of Long- and Short-Range Ferroelectric Order on the Electrocaloric Effect in Relaxor Ferroelectric Ceramics. <i>Physical Review Applied</i> , 2019 , 11,	4.3	36	
254	Nonstoichiometric BiFe0.9Ti0.05O3 multiferroic ceramics with ultrahigh electrical resistivity. Journal of Applied Physics, 2010 , 108, 094112	2.5	36	
253	Tuning the electrical properties of La0.75Ca0.25MnO3 thin films by ferroelectric polarization, ferroelectric-field effect, and converse piezoelectric effect. <i>Physical Review B</i> , 2006 , 74,	3.3	34	

252	Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2917-21	11.8	33
251	A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 935-9	11.8	33
250	Effects of Ca doping on the Curie temperature, structural, dielectric, and elastic properties of Ba0.4Sr0.6\(\mathbb{R}\)CaxTiO3 (0?x?0.3) perovskites. <i>Journal of Applied Physics</i> , 2005 , 98, 084108	2.5	33
249	van der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast thermal response. <i>Applied Physics Letters</i> , 2018 , 112, 031905	3.4	32
248	Highly entangled carbon nanoflakes on Li3V2(PO4)3 microrods for improved lithium storage performance. <i>RSC Advances</i> , 2013 , 3, 1297-1301	3.7	32
247	Effect of lattice-misfit strain on the process-induced imprint behavior in epitaxial Pb(Zr0.52Ti0.48)O3 thin films. <i>Applied Physics Letters</i> , 2004 , 85, 1583-1585	3.4	32
246	Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons. <i>Scientific Reports</i> , 2016 , 6, 29984	4.9	31
245	Spontaneous recovery of hydrogen-degraded TiO2 ceramic capacitors. <i>Applied Physics Letters</i> , 2004 , 84, 103-105	3.4	30
244	Synthesis and photocatalytic performance of the electrospun Bi2Fe4O9 nanofibers. <i>Journal of Materials Science</i> , 2013 , 48, 4143-4150	4.3	29
243	Tunable interface strain coupling and its impact on the electronic transport and magnetic properties of La0.5Ca0.5MnO3/Pb(ln1/2Nb1/2)O3Pb(Mg1/3Nb2/3)O3PbTiO3 multiferroic heterostructures. <i>Physical Review B</i> , 2014 , 90,	3.3	29
242	Influence of Electroless Nickel Plating on Multilayer Ceramic Capacitors and the Implications for Reliability in Multilayer Ceramic Capacitors. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 2751-275	5 2 ^{3.8}	29
241	Substrate-induced strain effect in La0.875Ba0.125MnO3 thin films grown on ferroelectric single-crystal substrates. <i>Applied Physics Letters</i> , 2008 , 92, 082908	3.4	28
240	Activation field and fatigue of (Pb, La)(Zr, Ti)O3 thin films. <i>Applied Physics Letters</i> , 1999 , 75, 4186-4188	3.4	28
239	Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles. <i>Nanoscale Research Letters</i> , 2014 , 9, 187	5	27
238	Strain-mediated electric-field control of resistance in the La0.85Sr0.15MnO3D.7Pb(Mg1BNb2B)O3D.3PbTiO3 structure. <i>Applied Physics Letters</i> , 2007 , 90, 152904	3.4	27
237	Modulated charged defects and conduction behaviour in doped BiFeO3thin films. <i>Journal Physics D:</i> Applied Physics, 2009 , 42, 162001	3	26
236	Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window. <i>ACS Applied Materials & District Science (Material & District Science)</i> 8, 9088-96	9.5	25
235	Graphene nanocluster decorated niobium oxide nanofibers for visible light photocatalytic applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8190	13	25

(2013-2012)

234	Crystalline and electronic structures of lithium silicates: A density functional theory study. <i>Journal of Nuclear Materials</i> , 2012 , 420, 31-38	3.3	24	
233	Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature. <i>Scientific Reports</i> , 2013 , 3, 3149	4.9	24	
232	(K,Na)NbO3 nanofiber-based self-powered sensors for accurate detection of dynamic strain. <i>ACS Applied Materials & Dynamic Strain</i> , 7, 4921-7	9.5	24	
231	Application of Weibull distribution analysis to the dielectric failure of multilayer ceramic capacitors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1997 , 47, 197-203	3.1	24	
230	Microstructure and dielectric relaxor properties for Ba0.5Sr0.5TiO3/La0.67Sr0.33MnO3 heterostructure. <i>Journal of Applied Physics</i> , 2007 , 101, 084101	2.5	24	
229	Core-shell structure of nanoscaled Ba0.5Sr0.5TiO3 self-wrapped by MgO derived from a direct solution synthesis at room temperature. <i>Nanotechnology</i> , 2005 , 16, 47-52	3.4	24	
228	In-plane dielectric properties of epitaxial 0.65Pb(Mg1BNb2B)O3D.35PbTiO3 thin films in a very wide frequency range. <i>Applied Physics Letters</i> , 2004 , 85, 1580-1582	3.4	24	
227	Aperiodic TiO2 nanotube photonic crystal: full-visible-spectrum solar light harvesting in photovoltaic devices. <i>Scientific Reports</i> , 2014 , 4, 6442	4.9	23	
226	NiAl diffusion barrier layer for integrating ferroelectric capacitors on Si. <i>Applied Physics Letters</i> , 2006 , 88, 252903	3.4	23	
225	Hydrogen-induced delayed fracture of PZT ceramics during dynamic charging under constant load. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 98, 1-5	3.1	23	
224	Mechanism study on extraordinary room-temperature CO sensing capabilities of Pd-SnO2 composite nanoceramics. <i>Sensors and Actuators B: Chemical</i> , 2019 , 285, 49-55	8.5	23	
223	Origin of Ferroelectricity in Epitaxial Si-Doped HfO Films. <i>ACS Applied Materials & Doped Materials &</i>	9.5	23	
222	Direct observation of carbon nanostructure growth at liquid-solid interfaces. <i>Chemical Communications</i> , 2014 , 50, 826-8	5.8	22	
221	A strong correlation of crystal structure and Curie point of barium titanate ceramics with Ba/Ti ratio of precursor composition. <i>Physica B: Condensed Matter</i> , 2008 , 403, 660-663	2.8	22	
220	Improvement of ferroelectric fatigue endurance in multiferroic (Ba0.5Sr0.5)TiO3(Bi1.05La0.05)FeO3(Ba0.5Sr0.5)TiO3 sandwich structures. <i>Applied Physics Letters</i> , 2008 , 92, 062902	3.4	22	
219	Epitaxial growth of SrTiO3 thin film on Si by laser molecular beam epitaxy. <i>Applied Physics Letters</i> , 2007 , 90, 012902	3.4	22	
218	Atomic-Scale Mechanism on Nucleation and Growth of MoC Nanoparticles Revealed by in Situ Transmission Electron Microscopy. <i>Nano Letters</i> , 2016 , 16, 7875-7881	11.5	21	
217	Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study. <i>ACS Applied Materials & Description of the Computer Study</i> . 13022-8	9.5	21	

216	Orientation-Control Synthesis of KTa0.25Nb0.75O3 Nanorods. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 609-613	3.8	21
215	Investigation of substrate-induced strain effects in La0.7Ca0.15Sr0.15MnO3 thin films using ferroelectric polarization and the converse piezoelectric effect. <i>Applied Physics Letters</i> , 2008 , 93, 102904	4 ^{3.4}	21
214	Microstructure and enhanced in-plane ferroelectricity of Ba0.7Sr0.3TiO3 thin films grown on MgAl2O4 (001) single-crystal substrate. <i>Applied Physics Letters</i> , 2006 , 89, 232906	3.4	21
213	A simple and convenient route to prepare poly(vinylidene fluoride trifluoroethylene) copolymer nanowires and nanotubes. <i>Chemical Communications</i> , 2005 , 1447-9	5.8	21
212	High dielectric tunability, electrostriction strain and electrocaloric strength at a tricritical point of tetragonal, rhombohedral and pseudocubic phases. <i>Journal of Alloys and Compounds</i> , 2015 , 646, 597-602	₂ 5.7	20
211	Release monitoring of single cells on a microfluidic device coupled with fluorescence microscopy and electrochemistry. <i>Biomicrofluidics</i> , 2010 , 4, 43009	3.2	20
2 10	Dielectric properties of barium titanate ceramics modified by SiO2 and by BaOBiO2. <i>Physica B: Condensed Matter</i> , 2009 , 404, 2374-2376	2.8	20
209	Influence of oxygen partial pressure on the structural and dielectric properties of Ba(Zr0.3Ti0.7)O3 thin films grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) using pulsed laser deposition. <i>Thin Solid Films</i> , 2009 , 517, 2092-2098	2.2	20
208	Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals. <i>Optics Express</i> , 2012 , 20, 21618-26	3.3	20
207	Coaction and competition between the ferroelectric field effect and the strain effect in Pr0.5Ca0.5MnO3 film/0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystal heterostructures. <i>Applied Physics Letters</i> , 2012 , 101, 172906	3.4	20
206	Effect of defect-induced internal field on the aging of relaxors. <i>Physical Review B</i> , 2003 , 67,	3.3	20
205	Large flexoelectricity in Al2O3-doped Ba(Ti0.85Sn0.15)O3 ceramics. <i>Applied Physics Letters</i> , 2017 , 110, 192903	3.4	19
204	FeCo alloy catalysts promoting polysulfide conversion for advanced lithium Bulfur batteries. Journal of Energy Chemistry, 2020 , 49, 339-347	12	19
203	Electric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic. <i>Materials Letters</i> , 2016 , 184, 131-133	3.3	19
202	Stable 4 V-class bicontinuous cathodes by hierarchically porous carbon coating on Li3V2(PO4)3 nanospheres. <i>Nanoscale</i> , 2014 , 6, 12426-33	7.7	19
201	Structural and dielectric properties of LuFe2O4 thin films grown by pulsed-laser deposition. <i>Thin Solid Films</i> , 2010 , 518, 6909-6914	2.2	19
200	A new low-temperature solution route to Aurivillius-type layered oxyfluoride perovskites Bi2MO5F (M = Nb, Ta) as photocatalysts. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 112-120	21.8	18
199	Semiconductor/Piezoelectrics Hybrid Heterostructures with Highly Effective Gate-Tunable Electrotransport and Magnetic Behaviors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26932-26937	9.5	18

198	A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal. <i>Nanoscale</i> , 2014 , 6, 13060-7	7.7	18
197	Dielectric behavior and phase transition in perovskite oxide Pb(Fe1/2Nb1/2)1\(\mathbb{I}\)TixO3 single crystal. <i>Journal of Applied Physics</i> , 2009 , 105, 124109	2.5	18
196	Optical properties of octahedral KTaO3 nanocrystalline. <i>Materials Chemistry and Physics</i> , 2009 , 115, 15	1-4.543	18
195	Perovskite barium zirconate titanate nanoparticles directly synthesized from solutions. <i>Journal of Nanoparticle Research</i> , 2006 , 8, 959-963	2.3	18
194	Observable Two-Step Nucleation Mechanism in Solid-State Formation of Tungsten Carbide. <i>ACS Nano</i> , 2019 , 13, 681-688	16.7	18
193	Clam-inspired nanoparticle immobilization method using adhesive tape as microchip substrate. <i>Sensors and Actuators B: Chemical</i> , 2016 , 222, 106-111	8.5	17
192	Direct synthesis of barium zirconate titanate (BZT) nanoparticles at room temperature and sintering of their ceramics at low temperature. <i>Ceramics International</i> , 2014 , 40, 2747-2750	5.1	17
191	Coupling of magnetic field and lattice strain and its impact on electronic phase separation in La0.335Pr0.335Ca0.33MnO3/ferroelectric crystal heterostructures. <i>Applied Physics Letters</i> , 2013 , 103, 263507	3.4	17
190	One-step synthesis of orientation accumulation SiC-C coaxial nanocables at low temperature. Journal of Materials Chemistry, 2009 , 19, 2958		17
189	Thickness dependence of in-plane dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 thin films epitaxially grown on LaAlO3. <i>Applied Physics Letters</i> , 2007 , 90, 132902	3.4	17
188	Integration of Oxide Semiconductor Thin Films with Relaxor-Based Ferroelectric Single Crystals with Large Reversible and Nonvolatile Modulation of Electronic Properties. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 32809-32817	9.5	17
187	Flexoelectric behavior in PIN-PMN-PT single crystals over a wide temperature range. <i>Applied Physics Letters</i> , 2017 , 111, 162901	3.4	16
186	Effects of ferroelectric-poling-induced strain on magnetic and transport properties of La0.67Ba0.33MnO3 thin films grown on (111)-oriented ferroelectric substrates. <i>Applied Physics Letters</i> , 2013 , 103, 132910	3.4	16
185	Effects of ferroelectric polarization and converse piezoelectric effect induced lattice strain on the electrical properties of La0.7Sr0.3MnO3 thin films. <i>Journal of Applied Physics</i> , 2006 , 99, 123714	2.5	16
184	WO3-based capacitor∏aristor doped with Gd2O3. <i>Materials Chemistry and Physics</i> , 2004 , 86, 253-257	4.4	16
183	High dielectric tunability of ferroelectric (Ba1\(\mathbb{R}\),Srx)(Zr0.1,Ti0.9)O3 ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 2589-2594	2.1	15
182	Epitaxial growth and interface strain coupling effects in manganite film/piezoelectric-crystal multiferroic heterostructures. <i>Materials Chemistry and Physics</i> , 2012 , 133, 42-46	4.4	15
181	Enhancement of electrochemical capacitive properties based on complementation of morphologies. <i>Electrochimica Acta</i> , 2012 , 81, 1-7	6.7	15

180	Raman scattering, electronic, and ferroelectric properties of Nd modified Bi4Ti3O12 nanotube arrays. <i>Journal of Applied Physics</i> , 2010 , 107, 094105	2.5	15
179	Realization of planar mixing by chaotic velocity in microfluidics. <i>Microelectronic Engineering</i> , 2011 , 88, 959-963	2.5	15
178	Synthesis, characterization and ferroelectric properties of lead-free K0.5Na0.5NbO3 nanotube arrays. <i>Journal of Applied Physics</i> , 2011 , 109, 114104	2.5	15
177	The model of electric field dependent dielectric properties for porous ceramics. <i>Journal of Applied Physics</i> , 2008 , 103, 114103	2.5	15
176	Degradation Mechanism of ZnO Ceramic Varistors Studied by Electrochemical Hydrogen Charging. Japanese Journal of Applied Physics, 2003 , 42, L48-L50	1.4	15
175	Water-Induced Degradation of Barium Titanate Ceramics Studied by Electrochemical Hydrogen Charging. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 735-37	3.8	15
174	Temperature-dependent fatigue behaviors of ferroelectric Pb(Zr0.52Ti0.48)O3 and Pb0.75La0.25TiO3 thin films. <i>Applied Physics Letters</i> , 2005 , 87, 042904	3.4	15
173	Giant Electrocaloric Effect and Ultrahigh Refrigeration Efficiency in Antiferroelectric Ceramics by Morphotropic Phase Boundary Design. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 45005-45014	9.5	15
172	Reversible and nonvolatile manipulation of the electronic transport properties of topological insulators by ferroelectric polarization switching. <i>Npj Quantum Materials</i> , 2018 , 3,	5	15
171	Solvothermal synthesis of pyrochlore-type cubic tungsten trioxide hemihydrate and high photocatalytic activity. <i>New Journal of Chemistry</i> , 2014 , 38, 3071-3077	3.6	14
170	Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 1396-1400	2.3	14
169	The strain effect and the ferroelectric field effect in LaMnO3+IFilm/Pb(Mg1/3Nb2/3)O3 P bTiO3 single-crystal heterostructures. <i>Journal of Alloys and Compounds</i> , 2013 , 581, 530-533	5.7	14
168	Material and device properties of ZnO-based film bulk acoustic resonator for mass sensing applications. <i>Applied Surface Science</i> , 2007 , 253, 9372-9380	6.7	14
167	Substrate effect on in-plane ferroelectric and dielectric properties of Ba0.7Sr0.3TiO3 thin films. Journal of Electroceramics, 2006 , 16, 587-591	1.5	14
166	Electrospinning preparation and high-temperature superconductivity of YBa2Cu3O7-x nanotubes. Journal of Materials Science, 2013 , 48, 3985-3990	4.3	13
165	Comb-like optical transmission spectra generated from one-dimensional two-segment-connected two-material waveguide networks optimized by genetic algorithm. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2014 , 378, 1200-1207	2.3	13
164	Interface strain coupling and its impact on the transport and magnetic properties of LaMnO3 thin films grown on ferroelectrically active substrates. <i>Journal of Alloys and Compounds</i> , 2012 , 519, 77-81	5.7	13
163	Heteroepitaxial growth and multiferroic properties of Mn-doped BiFeO3 films on SrTiO3 buffered IIIIV semiconductor GaAs. <i>Journal of Applied Physics</i> , 2013 , 114, 094106	2.5	13

(2008-2009)

162	Temperature-dependent electrical behavior of La0.7Sr0.3MnO3-buffered Bi0.9La0.1FeO3 thin films. <i>Journal of Applied Physics</i> , 2009 , 106, 094106	2.5	13
161	Synthesis and Magnetic Characterizations of Three-Dimensional Iron Sulfide Nanostructures. <i>Crystal Growth and Design</i> , 2009 , 9, 1293-1296	3.5	13
160	Shear-mode PMN-PT piezoelectric single crystal resonator for microfluidic applications. <i>Microelectronic Engineering</i> , 2011 , 88, 1028-1032	2.5	13
159	Tunable strain effect and ferroelectric field effect on the electronic transport properties of La0.5Sr0.5CoO3 thin films. <i>Journal of Applied Physics</i> , 2012 , 111, 103702	2.5	13
158	Dielectric properties and abnormal C-V characteristics of Ba0.5Sr0.5TiO3 B i1.5ZnNb1.5O7 composite thin films grown on MgO (001) substrates by pulsed laser deposition. <i>Applied Physics Letters</i> , 2006 , 89, 142905	3.4	13
157	Fabrication of copper ferrite nanowalls on ceramic surfaces by an electrochemical method. <i>Nanotechnology</i> , 2005 , 16, 3097-3100	3.4	13
156	Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 184-192	11.3	13
155	Gas sensing capabilities of TiO2 porous nanoceramics prepared through premature sintering. <i>Journal of Advanced Ceramics</i> , 2015 , 4, 152-157	10.7	12
154	Interface correlated exchange bias effect in epitaxial Fe3O4 thin films grown on SrTiO3 substrates. <i>Applied Physics Letters</i> , 2014 , 105, 241604	3.4	12
153	Electromechanical Conversion Behavior of K0.5Na0.5NbO3 Nanorods Synthesized by Hydrothermal Method. <i>Integrated Ferroelectrics</i> , 2013 , 142, 24-30	0.8	12
152	Singular room-temperature hydrogen sensing characteristics with ultrafast recovery of Pt Nb2O5 porous composite ceramics. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 30186-30192	6.7	12
151	Effects of electrochemical hydrogen charging on electrical properties of WO3 ceramics. <i>Journal of Materials Science</i> , 2007 , 42, 2524-2527	4.3	12
150	A quantitative analysis on the interfacial effect in the Pt/Ba0.5Sr0.5TiO3/La0.67Sr0.33MnO3heterostructure. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 256	5 ³ 2570	0 ¹²
149	Low temperature sintering behavior of B2O3 vapor in BaTiO3-based PTCR thermistors. <i>Sensors and Actuators A: Physical</i> , 2004 , 116, 215-218	3.9	12
148	Interfacial structure of epitaxial SrTiO3on Si: experiments and simulations. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 085409	3	11
147	Hydrogen-induced degradation in SrTiO3-based grain boundary barrier layer ceramic capacitors. <i>Ceramics International</i> , 2009 , 35, 953-956	5.1	11
146	Flattening of conic reflectors via a transformation method. <i>Physical Review A</i> , 2011 , 84,	2.6	11
145	Ultrasonic particle trapping in microfluidic devices using soft lithography. <i>Applied Physics Letters</i> , 2008 , 92, 213901	3.4	11

144	Hydrogen-related dynamic dielectric behavior of barium titanate single crystals. <i>Applied Physics Letters</i> , 2006 , 88, 202906	3.4	11
143	Analyzing core-shell structured zinc doped MgO Wrapped Ba(1-x)Sr(x)TiO3 nanoparticles. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14006-10	3.4	11
142	Improved dielectric properties of BaxSr1\(\mathbb{R}\)TiO3-based composite ceramics derived from core\(\mathbb{R}\)hell structured nanopowders. <i>Progress in Solid State Chemistry</i> , 2005 , 33, 207-215	8	11
141	PtWO 3 porous composite ceramics outstanding for sensing low concentrations of hydrogen in air at room temperature. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 6420-6424	6.7	10
140	Large-scale synthesis of Li3V2(PO4)3@C composites by a modified carbothermal reduction method as cathode material for lithium-ion batteries. <i>RSC Advances</i> , 2017 , 7, 25422-25428	3.7	10
139	Three-dimensional macroporous graphene monoliths with entrapped MoS nanoflakes from single-step synthesis for high-performance sodium-ion batteries <i>RSC Advances</i> , 2018 , 8, 2477-2484	3.7	10
138	Fabrication of Fine-Scale 1B Piezoelectric Arrays by Aqueous Gelcasting. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 2590-2595	3.8	10
137	Electrical properties and fatigue resistance of polyamide 6,6 fabrics with nanocrystal silver coating. Journal of Nanoscience and Nanotechnology, 2009 , 9, 3062-6	1.3	10
136	Water-induced degradation in 0.91Pb(Zn1/3Nb2/3)O3D.09PbTiO3 single crystals. <i>Journal of Applied Physics</i> , 2004 , 95, 5920-5921	2.5	10
135	Preparation and characterization of (Ba, Sr)TiO3 thin films using interdigital electrodes. <i>Microelectronic Engineering</i> , 2003 , 66, 872-879	2.5	10
134	Dependence of capacitance on electrode configuration for ferroelectric films with interdigital electrodes. <i>Microelectronic Engineering</i> , 2003 , 66, 880-886	2.5	10
133	Flexoelectric fatigue in (K,Na,Li)(Nb,Sb)O3 ceramics. <i>Applied Physics Letters</i> , 2018 , 113, 182901	3.4	10
132	The structural and in-plane dielectric/ferroelectric properties of the epitaxial (Ba, Sr)(Zr, Ti)O3 thin films. <i>Journal of Applied Physics</i> , 2014 , 115, 234102	2.5	9
131	Ho and Ti co-doped BiFeO 3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity. <i>Chinese Physics B</i> , 2014 , 23, 037501	1.2	9
130	Control of the strain and magnetoresistance of LaMnO3+lthin films using the magnetostriction of Terfenol-D alloy. <i>Journal of Applied Physics</i> , 2010 , 108, 124103	2.5	9
129	Hydrogen as an Unstable Shallow Donor in Oxides. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 05110	31.4	9
128	Anisotropic-strain-induced monoclinic distortion and robust charge-ordering in ultrathin Pr0.5Sr0.5MnO3films. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 062004	3	9
127	Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution. <i>Nanoscale Research Letters</i> , 2016 , 11, 120	5	8

126	Low temperature cofirable Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+ microwave dielectric ceramic with ZnOB2O3BiO2 frit. <i>Ceramics International</i> , 2012 , 38, 3175-3183	5.1	8	
125	Effects of ferroelectric-poling-induced strain on the transport and magnetic properties of La7/8Ba1/8MnO3 thin films. <i>Journal of Applied Physics</i> , 2010 , 108, 033912	2.5	8	
124	Preparation and characterizations of Ba(Zr,Ti)O3/(Ba,Sr)TiO3 heterostructures grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 single crystal substrates by pulsed laser deposition. <i>Thin Solid Films</i> , 2010 , 518, e82-e84	2.2	8	
123	Microwave characterization of (Pb,La)TiO3 thin films integrated on ZrO2BiO2Bi wafers by sol-gel techniques. <i>Applied Physics Letters</i> , 2004 , 85, 4696-4698	3.4	8	
122	Unique elastic, dielectric and piezoelectric properties of micro-architected metamaterials. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2758-2765	7.1	8	
121	A Hierarchically Porous Hollow Structure of Layered Bi2TiO4F2 for Efficient Photocatalysis. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 1892-1899	2.3	7	
120	Energy storage in BaBi 4 Ti 4 O 15 thin films with high efficiency. <i>Journal of Applied Physics</i> , 2019 , 125, 134101	2.5	7	
119	Giant conductivity enhancement of ferrite insulators induced by atomic hydrogen. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 13112-6	3.6	7	
118	Effect of post-annealing on laser-ablation deposited WS 2 thin films. <i>Vacuum</i> , 2018 , 152, 239-242	3.7	7	
117	Investigation of interface states in single-negative metamaterial layered structures based on the phase properties. <i>Optics Express</i> , 2013 , 21, 16742-52	3.3	7	
116	Hydrogen-induced degradation in multiferroic BiFeO3 ceramics. <i>Materials Letters</i> , 2007 , 61, 4354-4357	3.3	7	
115	Synthesis of BaZr0.75Hf0.25O3 by a solid-state reaction technique and characterizations of dielectric properties. <i>Journal of Alloys and Compounds</i> , 2005 , 402, 251-255	5.7	7	
114	Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 99, 79-82	3.1	7	
113	Preparation and Extraordinary Room-Temperature CO Sensing Capabilities of Pd-SnOlComposite Nanoceramics. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 4176-4181	1.3	6	
112	Magnetostrictive/piezoelectric drum magnetoelectric transducer for H2 detection. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 14915-14919	6.7	6	
111	Influence of multi-component glass on sintering behavior and microwave properties of Zr non-stoichiometricly substituted Ca[(Li1/3Nb2/3)]O3-lteramic. <i>Journal of Materials Science: Materials in Electronics</i> , 2012 , 23, 1775-1782	2.1	6	
110	Microfluidic flow direction control using continuous-wave laser. <i>Sensors and Actuators A: Physical</i> , 2012 , 188, 329-334	3.9	6	
109	Strong magnetoelectric coupling in solgel derived multiferroic (Pb0.76Ca0.24)TiO3toFe2O4 composite films. <i>Solid State Sciences</i> , 2012 , 14, 1492-1495	3.4	6	

108	In situ dynamical control of the strain and magnetoresistance of La0.7Ca0.15Sr0.15MnO3 thin films using the magnetostriction of Terfenol-D alloy. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 4878-4881	5.7	6
107	Grain size modulation on BaTiO3 nanoparticles synthesized at room temperature. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 2690-2694	3.3	6
106	Alkaline niobate based lead-free ceramic fiber/polymer 1-3 composites: processing and electromechanical properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2011 , 22, 1697-1702	2.1	6
105	Barium Strontium Zirconate Titanate (Ba,Sr)(Zr,Ti)O3 Thin Films for Tunable Microwave Applications. <i>Ferroelectrics</i> , 2011 , 419, 33-38	0.6	6
104	Size control of vapor bubbles on a silver film by a tuned CW laser. AIP Advances, 2012, 2, 022155	1.5	6
103	Impact of Pt bottom electrode on the properties of ferroelectric Bi3.25La0.75Ti3O12 capacitors. <i>Materials Letters</i> , 2007 , 61, 1933-1936	3.3	6
102	Effects of frequencies of AC modulation voltage on piezoelectric-induced images using atomic force microscopy. <i>Materials Characterization</i> , 2004 , 52, 319-322	3.9	6
101	The new technology for improving heat effect of pyroelectric infrared detector. <i>Ceramics International</i> , 2004 , 30, 1823-1826	5.1	6
100	Water-induced dc and ac degradations in TiO2-based ceramic capacitors. <i>Materials Chemistry and Physics</i> , 2003 , 82, 520-524	4.4	6
99	Microwave Characterization of BST Thin Films on LAO Interdigital Capacitor. <i>Integrated Ferroelectrics</i> , 2003 , 55, 939-946	0.8	6
98	Ba0.5Sr0.5TiO3 Thin Film Based Ring Resonators. <i>Integrated Ferroelectrics</i> , 2005 , 70, 151-157	0.8	6
97	Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure. <i>Physical Review Materials</i> , 2018 , 2,	3.2	6
96	Applications of ESEM on Materials Science: Recent Updates and a Look Forward. <i>Small Methods</i> , 2020 , 4, 1900588	12.8	6
95	Evidencing the structural conversion of hydrothermally synthesized titanate nanorods by in situ electron microscopy. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3786-3791	13	5
94	Phase Transition and Optical Properties for Ultrathin KNbO3Nanowires. <i>Advances in Condensed Matter Physics</i> , 2013 , 2013, 1-5	1	5
93	Arbitrary polygonal cloaks with multiple invisible regions. <i>Journal of Modern Optics</i> , 2011 , 58, 14-20	1.1	5
92	Effects of forming gas annealing on LiNbO3 single crystals. <i>Physica B: Condensed Matter</i> , 2011 , 406, 683	- 6 .86	5
91	Epitaxial growth and rectification characteristics of double perovskite oxide La2NiMnO6 films on Nb-SrTiO3 single crystal substrates. <i>Thin Solid Films</i> , 2011 , 519, 6148-6150	2.2	5

(2012-2010)

90	Preparation of PbTiO3 nanoceramics based on hydrothermal nanopowders and characterization of their electrical properties. <i>Materials Chemistry and Physics</i> , 2010 , 121, 10-13	4.4	5
89	A microfluidic system with embedded acoustic wave sensor for in situ detection of dynamic fluidic properties. <i>Microelectronic Engineering</i> , 2010 , 87, 658-662	2.5	5
88	Temperature evolution of anisotropic stress induced highly ordered stripe magnetic domains in La0.7Sr0.3MnO3 thin film on (110) NdGaO3 substrate. <i>Solid State Communications</i> , 2010 , 150, 2028-203	31 ^{1.6}	5
87	Room temperature synthesis of titania microspheres by hydrolysis of titanium alkoxide using water vapor. <i>Journal of Alloys and Compounds</i> , 2006 , 413, 307-311	5.7	5
86	Hydrogen-induced resistance degradation in NiCuZn ferrites. <i>Physica B: Condensed Matter</i> , 2004 , 353, 41-45	2.8	5
85	Behavior of a movable electrode in piezo-response mode of an atomic force microscope. <i>Journal of Applied Physics</i> , 2004 , 95, 8431-8435	2.5	5
84	Conversion of Conventional NiO Powders into Nanostructures by a Simple Chemical Method. <i>Chemistry Letters</i> , 2005 , 34, 180-181	1.7	5
83	Hydrogen-induced degradation in NiCuZn ferrite-based multilayer chip inductors. <i>Materials Letters</i> , 2005 , 59, 1636-1639	3.3	5
82	Hydrogen-induced degradation in strontium titanate single crystals. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 631-633	2.6	5
81	Effect of dopants on ageing properties for the PMN-0.1 PT relaxor ferroelectric ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 1996 , 7, 133	2.1	5
80	Effects of Ba and Ti co-doping on BiFeO3 multiferroic ceramics optimized through two-step doping. Journal of Advanced Ceramics, 2016 , 5, 204-209	10.7	4
79	Ferromagnetic and Photocatalytic Properties of Layered Perovskite LaBaCoDNanostructures. Journal of Nanoscience and Nanotechnology, 2016 , 16, 930-3	1.3	4
78	Chemical solution approach to SrTiO3 synthesis using a new precursor. <i>Journal of Materials Science</i> , 2012 , 47, 433-439	4.3	4
77	Estimation of the magnetoelectric coefficient of a piezoelectric-magnetostrictive composite via finite element analysis. <i>Journal of Applied Physics</i> , 2013 , 114, 027012	2.5	4
76	Room-temperature large magnetic-dielectric coupling in new phase anatase VTiO(4). <i>Chemical Communications</i> , 2013 , 49, 10462-4	5.8	4
75	Magnetostriction-strain-induced enhancement and modulation of photovoltaic performance in Si-p∄/TbxDy1⊠Fe2 composite. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 641-644	1.6	4
74	Changing the scattering of sheltered targets. <i>Physical Review A</i> , 2011 , 83,	2.6	4
73	Time-variant 1D photonic crystals using flowing microdroplets. <i>Optics Express</i> , 2012 , 20, 24330-41	3.3	4

72	Time dependence of dielectric constants of Pb(Mg1/3Nb2/3)O3-BaTiO3-PbTiO3 ferroelectric ceramics for X7R MLCs. <i>Journal of Materials Science: Materials in Electronics</i> , 1997 , 8, 195-197	2.1	4
71	Dielectric Properties of (001)-Oriented Ba(Zr0.25Ti0.75)O3 Thin Films Prepared by Pulsed Laser Deposition. <i>Ferroelectrics</i> , 2007 , 357, 121-127	0.6	4
70	The influence of direct current bias on the initial aging of a doped lead magnesium niobate ceramic. <i>Journal of Materials Research</i> , 1998 , 13, 675-679	2.5	4
69	Temperature Dependence of the Initial Ageing of Dielectric Constant in a Lead Magnesium Niobate Based Ceramic. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, 589-592	1.4	4
68	Thermal shock resistance of miniaturized multilayer ceramic capacitors. <i>Journal of Materials Science: Materials in Electronics</i> , 1994 , 5, 339-343	2.1	4
67	In Situ Observation of Ice Formation from Water Vapor by Environmental SEM. <i>Crystal Growth and Design</i> , 2018 , 18, 6602-6608	3.5	4
66	Silkworm Excrement Derived In-situ Co-doped Nanoporous Carbon as Confining Sulfur Host for Lithium Sulfur Batteries. <i>ChemistrySelect</i> , 2019 , 4, 5678-5685	1.8	3
65	Highly enhanced sinterability of fine-grained Ba0.6Sr0.4TiO3MgO bulk ceramics and in-situ nanocomposite thick films. <i>Ceramics International</i> , 2014 , 40, 10475-10481	5.1	3
64	Photocatalytically Active YBa2Cu3O7Nanoparticles Synthesized via a Soft Chemical Route. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-5	3.2	3
63	Photocatalysis of Yttrium Doped BaTiO3Nanofibres Synthesized by Electrospinning. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-6	3.2	3
62	Electric-field-controlled interface strain coupling and non-volatile resistance switching of La1-xBaxMnO3 thin films epitaxially grown on relaxor-based ferroelectric single crystals. <i>Journal of Applied Physics</i> , 2014 , 116, 113911	2.5	3
61	Effects of ferroelectric polarization switching on the electronic transport and magnetic properties of La0.8Ce0.2MnO3 epitaxial thin films. <i>Journal of Applied Physics</i> , 2013 , 114, 073904	2.5	3
60	Sol-Gel Template Synthesis and Photoluminescence Properties of (Pb 0.5 Sr 0.5)TiO 3 Nanotube Arrays. <i>Chinese Physics Letters</i> , 2011 , 28, 077702	1.8	3
59	Photonic gap vanishing in one-dimensional photonic crystals with single-negative metamaterials. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2011 , 375, 2465-2470	2.3	3
58	Low-temperature synthesis and analysis of barium titanate nanoparticles with excess barium. <i>Advanced Powder Technology</i> , 2011 , 22, 401-404	4.6	3
57	Cloaks with multiple invisible regions. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 015105	1.7	3
56	Initial dielectric aging in a lead magnesium niobate ceramic under strong alternating current fields. <i>Materials Letters</i> , 1998 , 37, 40-43	3.3	3
55	INFLUENCE OF PROCESSING CONDITIONS ON THE STRUCTURE OF STRONTIUM TITANATE THIN FILMS GROWN ON SI BY LASER MBE. <i>Integrated Ferroelectrics</i> , 2006 , 86, 109-116	0.8	3

54	A Phenomenological Explanation to the Dielectric Aging Mechanism of a Lead Magnesium Niobate-Based Ceramic. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 515-519	1.4	3	
53	Effect of B2O3Vapor Doping on the Lattice Parameter and Electrical Properties in BaTiO3Ceramics. Japanese Journal of Applied Physics, 2003, 42, L1516-L1518	1.4	3	
52	Optical Degradation of Indium Tin Oxide Thin Films Induced by Hydrogen-Related Room Temperature Reduction. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, L546-L548	1.4	3	
51	INFLUENCE OF TEMPERATURE ON THE IN-PLANE DIELECTRIC PROPERTIES OF BARIUM STRONTIUM TITANATE THIN FILMS. <i>Integrated Ferroelectrics</i> , 2005 , 77, 157-164	0.8	3	
50	Studies of interface characteristics of fine-grain ferroelectric based glass-ceramic composites using impedance spectroscopy. <i>Journal of Alloys and Compounds</i> , 2016 , 682, 196-202	5.7	3	
49	Electric-field-controllable nonvolatile multilevel resistance switching of Bi0.93Sb0.07/PMN-0.29PT(111) heterostructures. <i>Applied Physics Letters</i> , 2018 , 113, 223504	3.4	3	
48	Mechanochemistry of graphene: Tuning ion absorption on graphene via strain. <i>Physica B: Condensed Matter</i> , 2017 , 527, 30-34	2.8	2	
47	Ferroelectric relaxor behavior and dielectric properties of La/Y co-doped (Ba0.9Ca0.1)(Zr0.2Ti0.8)O3 ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 615	0 ² 6 ¹ 15!	5 ²	
46	Effects of ferroelectric-poling-induced strain on the electronic transport and magnetic properties of (001)- and (111)-oriented La0.5Ba0.5MnO3 thin films. <i>Materials Chemistry and Physics</i> , 2014 , 144, 470)-4 <i>7</i> 15	2	
45	Enhanced magnetoelectrical coupling in cobalt ferrite/lead lanthanum zirconate titanate 0-3 composites through phase boundary modification. <i>Materials Chemistry and Physics</i> , 2013 , 143, 34-40	4.4	2	
44	Composite thin films consisting of fine-grained barium strontium titanate for tunable microwave devices. <i>Ceramics International</i> , 2015 , 41, S567-S571	5.1	2	
43	Insight into Metalized Interfaces in Nano Devices by Surface Analytical Techniques. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27351-6	9.5	2	
42	Terahertz Time-Domain Spectroscopy of 0.73Pb(Mg1/3Nb2/3)O30.27PbTiO3 Single Crystal. Journal of the American Ceramic Society, 2014 , 97, 1696-1699	3.8	2	
41	Effects of electric-field-induced piezoelectric strain on the electronic transport properties of La0.9Ce0.1MnO3 thin films. <i>Thin Solid Films</i> , 2012 , 525, 45-48	2.2	2	
40	Magnetoelectric properties of lead-free Li0.06K0.47Na0.47NbO3?CoFe2O4 nanocomposite films fabricated by a one-step chemical process. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 2651-2654	1.6	2	
39	Photovoltaic Devices: Direct and Seamless Coupling of TiO2 Nanotube Photonic Crystal to Dye-Sensitized Solar Cell: A Single-Step Approach (Adv. Mater. 47/2011). <i>Advanced Materials</i> , 2011 , 23, 5623-5623	24	2	
38	COMPARISON OF STRUCTURES AND PROPERTIES OF BST THIN FILMS GROWN ON LAO AND MAO SUBSTRATES. <i>Integrated Ferroelectrics</i> , 2006 , 86, 103-108	0.8	2	
37	Structural and electrical characteristics of highly textured oxidation-free Ru thin films by DC magnetron sputtering. <i>Journal of Alloys and Compounds</i> , 2005 , 392, 231-236	5.7	2	

36	Highly c-axis oriented CaRuO3 thin films on LaAlO3 buffered Si(100) substrates by pulsed laser deposition. <i>Physica Status Solidi A</i> , 2004 , 201, R101-R104		2
35	Highly oriented SrTiO3 thin film on Si deposited by magnetron sputtering. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2003 , 21, 825-826	2.9	2
34	Effect of AC-Powered Water Electrolysis on the Structural and Optical Properties of Indium Tin Oxide Thin Films. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1007-1009	3.8	2
33	Negative Coriolis effect in piezoelectric metamaterials. <i>Journal of Alloys and Compounds</i> , 2019 , 801, 262	2 -3, 66	1
32	In situ observations for growth kinetics of water droplets on Bambusa multiplex leaves. <i>Applied Physics Letters</i> , 2019 , 114, 153702	3.4	1
31	Magnetism of a relaxed single atom vacancy in graphene. <i>Physica B: Condensed Matter</i> , 2018 , 534, 184-1	3 88	1
30	Effects of Deposition Temperature on the Structural and Physical Properties of Ba(Fe1.8Co0.2)2As2 Thin Film. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 869-875	1.5	1
29	Multifunctionalization of Nanostructured Metal Oxides. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-1	3.2	1
28	CONTROLLING THE ELECTROMAGNETIC FIELD BY INDEFINITE MEDIA WITH EXTREMELY STRONG ANISOTROPY. <i>Progress in Electromagnetics Research</i> , 2012 , 130, 513-524	3.8	1
27	Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate. <i>Electrophoresis</i> , 2011 , 32, 3371-7	3.6	1
26	Laser-actuated micro-valves and micro-pumps 2011,		1
25	Compositional Dependence of Structure and Dielectric Properties in Ba(ZrxTi1 - x)O3 Thin Films Grown by Pulsed Laser Deposition. <i>Ferroelectrics</i> , 2009 , 387, 63-69	0.6	1
24	Water-Induced Degradation in (Bi1/2Na1/2)TiO3 Lead-Free Ceramics. <i>Journal of Electronic Materials</i> , 2009 , 38, 2207-2210	1.9	1
23	Structure and Properties of Hydrogen-Charged Electrochromic Nb2O5 Ceramics. <i>Advanced Materials Research</i> , 2009 , 79-82, 1619-1622	0.5	1
22	Excess titanium in barium titanate nanoparticles directly synthesized from solution. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 1676-1679	3.9	1
21	Hydrogen-Induced Degradation and Aging of Pb(Mg1/3Nb2/3)O3-Based X7R Multilayer Ceramic Capacitors. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 5530-5533	1.4	1
20	Hydrogen-Induced Failure in ZnO Multilayer Ceramic Chip Varistors with a Zinc Phosphate Passivation Layer. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 2064-2066	3.8	1
19	IN-PLANE DIELECTRIC PROPERTIES OF EPITAXIAL Ba(Zr0.3Ti0.7)O3 THIN FILM GROWN ON LSAT (001) SINGLE CRYSTAL SUBSTRATE. <i>Integrated Ferroelectrics</i> , 2007 , 93, 154-160	0.8	1

(1995-2007)

18	Tuning the Resistance of La0.7Sr0.3MnO3 Thin Films by Converse Piezoelectric Effect. <i>Ferroelectrics</i> , 2007 , 357, 87-91	0.6	1
17	Spark Plasma Sintering of Core-Shell Structured (Mg,Zn)O Wrapped Ba1-xSrxTiO3 Nanopowder. <i>Key Engineering Materials</i> , 2007 , 334-335, 1037-1040	0.4	1
16	Structure and Dielectric Properties of Barium Strontium Titanate Thin Films Grown on LSAT Substrates. <i>Ferroelectrics</i> , 2007 , 357, 160-165	0.6	1
15	TUNABLE DIELECTRIC BEHAVIORS OF BARIUM ZIRCONATE TITANATE THIN FILMS. <i>Integrated Ferroelectrics</i> , 2006 , 80, 443-449	0.8	1
14	TEM investigation of hydrogen-implanted and annealed single-crystal SrTiO3. <i>Current Applied Physics</i> , 2006 , 6, 583-586	2.6	1
13	A Discernible Dielectric Aging Effect in the Undoped, N2-H2-Annealed Lead Magnesium Niobate Lead Titanate Ceramic. <i>Journal of the American Ceramic Society</i> , 2005 , 80, 1889-1892	3.8	1
12	Pulsed Laser Deposition of Ba0.6Sr0.4TiO3 Thin Films and Their Optical Properties. <i>Integrated Ferroelectrics</i> , 2005 , 69, 443-451	0.8	1
11	Fabrication of the Cobalt Ferrite/Modified Sodium Bismuth Titanate 0-3 Multiferroic Composites via Diffusion-blocking. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2011 , 26, 486-490	1	1
10	Ferroelastic-strain-induced multiple nonvolatile resistance states in GeTe/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructures. <i>Journal of Materiomics</i> , 2018 , 4, 412-417	6.7	1
9	Estimate bond angle dependence of superconducting transition temperature in NaFeAs with the first principle methods. <i>Solid State Communications</i> , 2016 , 246, 12-16	1.6	
8	TEMPORAL MODULATION OF LIGHT INTENSITY VIA 1D TIME-VARIANT PHOTONIC CRYSTAL STRUCTURE. <i>Progress in Electromagnetics Research</i> , 2013 , 135, 627-639	3.8	
7	Study on Barium Strontium Titanate Thin Films Integrated on Si Substrates by Laser Molecular Beam Epitaxy. <i>Advanced Materials Research</i> , 2009 , 79-82, 823-826	0.5	
6	Dielectric Properties of Barium Titanate Ceramics Modified by CuO in Different Methods. <i>Advanced Materials Research</i> , 2012 , 463-464, 276-280	0.5	
5	Influence of Dopants on Room Temperature Insulation Resistivity of Lead Magnesium Niobate Based Ceramics. <i>Journal of Materials Science Letters</i> , 1998 , 17, 1025-1027		
4	Preparation and Properties of Bi0.5Na0.5TiO3-Ba (Hf,Ti)TiO3 Lead-Free Piezoelectric Ceramics. <i>Key Engineering Materials</i> , 2007 , 334-335, 957-960	0.4	
3	Ferroelectric and Piezoelectric Properties of Pb(Zr,Ti)O3 Thin Films Integrated on SOI Wafers. <i>Integrated Ferroelectrics</i> , 2005 , 69, 223-229	0.8	
2	Large quasi-linear electro-optical response of BaZr0.75Hf0.25O3 thin films by pulsed laser deposition. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, R63-R65	1.6	
1	Dielectric ageing and multi-peak phenomena in ?-T curves for ZnO-doped PMW-PZ-PT ceramics. <i>Materials Letters</i> , 1995 , 23, 261-264	3.3	