Anupam Bishayee, BPharm, MPharm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1992993/publications.pdf

Version: 2024-02-01

249 papers

18,524 citations

70 h-index 123 g-index

254 all docs

254 docs citations

times ranked

254

22471 citing authors

#	Article	IF	Citations
1	Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2021, 20, 200-216.	46.4	1,990
2	The Role of Resveratrol in Cancer Therapy. International Journal of Molecular Sciences, 2017, 18, 2589.	4.1	503
3	Cancer Prevention and Treatment with Resveratrol: From Rodent Studies to Clinical Trials. Cancer Prevention Research, 2009, 2, 409-418.	1.5	443
4	Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 136-154.	7.4	427
5	Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Seminars in Cancer Biology, 2022, 80, 1-17.	9.6	270
6	Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Frontiers in Bioscience - Landmark, 2011 , 16 , 980 .	3.0	265
7	Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochemical Pharmacology, 2013, 85, 1579-1587.	4.4	262
8	Bioactive natural products in cancer prevention and therapy: Progress and promise. Seminars in Cancer Biology, 2016, 40-41, 1-3.	9.6	254
9	Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Seminars in Cancer Biology, 2016, 40-41, 48-81.	9.6	252
10	Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 2019, 22, 225-237.	1.0	250
11	Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World Journal of Hepatology, 2011, 3, 228.	2.0	249
12	Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology, 2021, 69, 5-23.	9.6	241
13	Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnology Advances, 2018, 36, 328-334.	11.7	239
14	The Inflammation and Liver Cancer. Advances in Experimental Medicine and Biology, 2014, 816, 401-435.	1.6	237
15	Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Frontiers in Pharmacology, 2019, 10, 1336.	3.5	234
16	Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Letters, 2014, 346, 206-216.	7.2	222
17	Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer, 2019, 125, 1228-1246.	4.1	222
18	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220

#	Article	IF	Citations
19	Curcumin and Liver Cancer: A Review. Current Pharmaceutical Biotechnology, 2012, 13, 218-228.	1.6	218
20	Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients, 2016, 8, 529.	4.1	204
21	Vanadium in the detection, prevention and treatment of cancer: The in vivo evidence. Cancer Letters, 2010, 294, 1-12.	7.2	201
22	Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Seminars in Cancer Biology, 2016, 40-41, 209-232.	9.6	193
23	RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. Journal of Cellular Physiology, 2019, 234, 14951-14965.	4.1	188
24	Alkaloids for cancer prevention and therapy: Current progress and future perspectives. European Journal of Pharmacology, 2019, 858, 172472.	3.5	182
25	Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Seminars in Cancer Biology, 2016, 40-41, 35-47.	9.6	178
26	Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review. Nutrients, 2018, 10, 645.	4.1	178
27	Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treatment Reviews, 2010, 36, 43-53.	7.7	175
28	Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents. Expert Review of Neurotherapeutics, 2010, 10, 729-745.	2.8	175
29	Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy. Nutrients, 2018, 10, 731.	4.1	173
30	Matrix Metalloproteinases: A challenging paradigm of cancer management. Seminars in Cancer Biology, 2019, 56, 100-115.	9.6	169
31	Terpenoids and breast cancer chemoprevention. Breast Cancer Research and Treatment, 2009, 115, 223-239.	2.5	168
32	Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacological Research, 2018, 128, 366-375.	7.1	167
33	Molecular targets of curcumin for cancer therapy: an updated review. Tumor Biology, 2016, 37, 13017-13028.	1.8	157
34	Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: Inhibition of cell proliferation and induction of apoptosis. Chemico-Biological Interactions, 2009, 179, 131-144.	4.0	151
35	Curcumin and neurodegenerative diseases: a perspective. Expert Opinion on Investigational Drugs, 2012, 21, 1123-1140.	4.1	149
36	Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis. Cancer Prevention Research, 2010, 3, 753-763.	1.5	144

#	Article	IF	CITATIONS
37	The health benefits of blackcurrants. Food and Function, 2012, 3, 795.	4.6	144
38	Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World Journal of Gastroenterology, 2017, 23, 5097.	3.3	144
39	Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 2020, 38, 107382.	11.7	136
40	Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Seminars in Cancer Biology, 2016, 40-41, 100-115.	9.6	134
41	A small plant with big benefits: Fenugreek (<i>Trigonella foenumâ€graecum</i> Linn.) for disease prevention and health promotion. Molecular Nutrition and Food Research, 2017, 61, 1600950.	3.3	131
42	Resveratrol and diabetes: A critical review of clinical studies. Biomedicine and Pharmacotherapy, 2017, 95, 230-234.	5.6	131
43	Neuroinflammation in Alzheimer's Disease. Advances in Protein Chemistry and Structural Biology, 2017, 108, 33-57.	2.3	129
44	Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. International Journal of Molecular Sciences, 2018, 19, 765.	4.1	127
45	Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. Journal of Ethnopharmacology, 1995, 47, 69-74.	4.1	124
46	Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats. Journal of Nutritional Biochemistry, 2011, 22, 1035-1046.	4.2	119
47	Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers, 2019, 11, 611.	3.7	111
48	Butein in health and disease: A comprehensive review. Phytomedicine, 2017, 25, 118-127.	5.3	110
49	Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sciences, 2018, 194, 75-87.	4.3	109
50	Molecular targets of celastrol in cancer: Recent trends and advancements. Critical Reviews in Oncology/Hematology, 2018, 128, 70-81.	4.4	109
51	Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells, 2020, 9, 1451.	4.1	109
52	Therapeutic potential of Aloe vera—A miracle gift of nature. Phytomedicine, 2019, 60, 152996.	5.3	107
53	Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms. Carcinogenesis, 2011, 32, 888-896.	2.8	105
54	Targeting Multiple Signaling Pathways in Cancer: The Rutin Therapeutic Approach. Cancers, 2020, 12, 2276.	3.7	105

#	Article	IF	Citations
55	Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Marine Drugs, 2017, 15, 310.	4.6	103
56	Chemopreventive and Chemotherapeutic Potential of Curcumin in Breast Cancer. Current Drug Targets, 2012, 13, 1799-1819.	2.1	102
57	Anticancer Potential of Aloes: Antioxidant, Antiproliferative, and Immunostimulatory Attributes. Planta Medica, 2012, 78, 843-852.	1.3	101
58	Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives. Phytochemistry Reviews, 2014, 13, 793-810.	6.5	98
59	Potential role of genipin in cancer therapy. Pharmacological Research, 2018, 133, 195-200.	7.1	98
60	Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. International Journal of Molecular Sciences, 2017, 18, 643.	4.1	97
61	Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology, 2022, 80, 256-275.	9.6	96
62	A multi-targeted approach to suppress tumor-promoting inflammation. Seminars in Cancer Biology, 2015, 35, \$151-\$184.	9.6	95
63	Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma. Targeted Oncology, 2017, 12, 1-10.	3.6	94
64	Silymarin and hepatocellular carcinoma. Anti-Cancer Drugs, 2015, 26, 475-486.	1.4	93
65	Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target., 2020, 207, 107464.		91
66	Chemopreventive and Therapeutic Potential of Tea Polyphenols in Hepatocellular Cancer. Nutrition and Cancer, 2013, 65, 329-344.	2.0	88
67	Medicinal Plants in the Prevention and Treatment of Colon Cancer. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-51.	4.0	83
68	Resveratrol and liver disease: from bench to bedside and community. Liver International, 2010, 30, 1103-1114.	3.9	81
69	Pentacyclic triterpenes: New tools to fight metabolic syndrome. Phytomedicine, 2018, 50, 166-177.	5.3	77
70	Suppression of the Inflammatory Cascade is Implicated in Resveratrol Chemoprevention of Experimental Hepatocarcinogenesis. Pharmaceutical Research, 2010, 27, 1080-1091.	3.5	74
71	Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Seminars in Cancer Biology, 2021, 73, 219-264.	9.6	73
72	Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Archives of Toxicology, 2013, 87, 383-396.	4.2	72

#	Article	IF	Citations
73	Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. European Journal of Medicinal Chemistry, 2016, 112, 289-297.	5.5	71
74	Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Seminars in Cancer Biology, 2017, 46, 146-157.	9.6	71
75	Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers, 2021, 13, 4796.	3.7	71
76	Potential Anticancer Properties of Osthol: A Comprehensive Mechanistic Review. Nutrients, 2018, 10, 36.	4.1	70
77	Vanadium chemoprevention of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes. Breast Cancer Research and Treatment, 2000, 63, 133-145.	2.5	68
78	Neuroprotective Potential of Ellagic Acid: A Critical Review. Advances in Nutrition, 2021, 12, 1211-1238.	6.4	68
79	Trends in Research on Exosomes in Cancer Progression and Anticancer Therapy. Cancers, 2021, 13, 326.	3.7	68
80	Ginger and Propolis Exert Neuroprotective Effects against Monosodium Glutamate-Induced Neurotoxicity in Rats. Molecules, 2017, 22, 1928.	3.8	66
81	Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. International Journal of Molecular Sciences, 2019, 20, 4957.	4.1	64
82	Potential role of targeted therapies in the treatment of triple-negative breast cancer. Anti-Cancer Drugs, 2016, 27, 147-155.	1.4	62
83	Phospholipase A2 Isoforms as Novel Targets for Prevention and Treatment of Inflammatory and Oncologic Diseases. Current Drug Targets, 2016, 17, 1940-1962.	2.1	62
84	Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms. Molecules, 2019, 24, 3399.	3.8	58
85	Oleuropein and Cancer Chemoprevention: The Link is Hot. Molecules, 2017, 22, 705.	3.8	57
86	Therapeutic implications of toll-like receptors in peripheral neuropathic pain. Pharmacological Research, 2017, 115, 224-232.	7.1	56
87	Marine Cyanobacteria and Microalgae Metabolites—A Rich Source of Potential Anticancer Drugs. Marine Drugs, 2020, 18, 476.	4.6	56
88	Mango (<i>Mangifera indica</i> L.): a magnificent plant with cancer preventive and anticancer therapeutic potential. Critical Reviews in Food Science and Nutrition, 2021, 61, 2125-2151.	10.3	56
89	Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma. Cancers, 2020, 12, 562.	3.7	56
90	Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Molecular Nutrition and Food Research, 2012, 56, 14-29.	3. 3	55

#	Article	IF	CITATIONS
91	Multi-targeting Andrographolide and its Natural Analogs as Potential Therapeutic Agents. Current Topics in Medicinal Chemistry, 2017, 17, 845-857.	2.1	55
92	Alteration of Hepatic Proinflammatory Cytokines is Involved in the Resveratrol-Mediated Chemoprevention of Chemically-Induced Hepatocarcinogenesis. Current Pharmaceutical Biotechnology, 2012, 13, 229-234.	1.6	54
93	Anti-Inflammatory Mechanism Involved in Pomegranate-Mediated Prevention of Breast Cancer: the Role of NF- \hat{l}^2 B and Nrf2 Signaling Pathways. Nutrients, 2017, 9, 436.	4.1	54
94	Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacological Research, 2018, 129, 357-364.	7.1	54
95	Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules, 2020, 10, 1561.	4.0	54
96	Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Seminars in Cancer Biology, 2022, 80, 276-305.	9.6	53
97	Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair, 2019, 82, 102679.	2.8	52
98	A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies. Frontiers in Pharmacology, 2021, 12, 639840.	3.5	52
99	Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytotherapy Research, 2022, 36, 1854-1883.	5.8	52
100	Anticancer attributes of desert plants. Anti-Cancer Drugs, 2012, 23, 255-271.	1.4	51
101	Chemoprevention of Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis in Rats by Sulfated Polysaccharides and Aqueous Extract of <i>Ulva lactuca</i> . Integrative Cancer Therapies, 2015, 14, 525-545.	2.0	51
102	The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharmaceutica Sinica B, 2021, 11, 1740-1766.	12.0	51
103	Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutrition and Cancer, 2016, 68, 120-130.	2.0	50
104	Time course effects of vanadium supplement on cytosolic reduced glutathione level and glutathione S-transferase activity. Biological Trace Element Research, 1995, 48, 275-285.	3.5	49
105	Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacological Research, 2022, 175, 105837.	7.1	48
106	Pomegranate phytoconstituents blunt the inflammatory cascade in a chemically induced rodent model of hepatocellular carcinogenesis. Journal of Nutritional Biochemistry, 2013, 24, 178-187.	4.2	47
107	Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence. Critical Reviews in Food Science and Nutrition, 2016, 56, 1753-1775.	10.3	47
108	Further Evidence for Chemopreventive Potential of \hat{l}^2 -Carotene Against Experimental Carcinogenesis: Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis Is Prevented More Effectively by \hat{l}^2 -Carotene Than by Retinoic Acid. Nutrition and Cancer, 2000, 37, 89-98.	2.0	46

#	Article	IF	Citations
109	Green tea and the risk of gastric cancer: Epidemiological evidence. World Journal of Gastroenterology, 2013, 19, 3713.	3.3	46
110	Ocimum sanctum Linn. (Tulsi). Anti-Cancer Drugs, 2013, 24, 659-666.	1.4	45
111	Antiangiogenic Effects of Coumarins against Cancer: From Chemistry to Medicine. Molecules, 2019, 24, 4278.	3.8	45
112	Hypolipidaemic and antiatherosclerotic effects of oralGymnema sylvestre R. Br. Leaf extract in albino rats fed on a high fat diet. Phytotherapy Research, 1994, 8, 118-120.	5.8	44
113	Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. International Journal of Molecular Sciences, 2021, 22, 4478.	4.1	44
114	Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends Towards Future Drugs. Current Medicinal Chemistry, 2019, 26, 2389-2406.	2.4	44
115	Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/ <i<math>>1^2V-Catenin Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-15.</i<math>	1.2	41
116	Targeting the crosstalk between canonical Wnt/ \hat{l}^2 -catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. , 2021, 227, 107876.		41
117	Angiogenesis in hepatocellular carcinoma: a potential target for chemoprevention and therapy. Current Cancer Drug Targets, 2012, 12, 1095-118.	1.6	41
118	Mechanism of Breast Cancer Preventive Action of Pomegranate: Disruption of Estrogen Receptor and Wnt/ \hat{l}^2 -Catenin Signaling Pathways. Molecules, 2015, 20, 22315-22328.	3.8	40
119	Phytochemicals potently inhibit migration of metastatic breast cancer cells. Integrative Biology (United Kingdom), 2015, 7, 792-800.	1.3	40
120	Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review. Biomedicines, 2021, 9, 480.	3.2	40
121	Anthocyanin-rich black currant extract suppresses the growth of human hepatocellular carcinoma cells. Natural Product Communications, 2010, 5, 1613-8.	0.5	40
122	Targeting lκappaB kinases for cancer therapy. Seminars in Cancer Biology, 2019, 56, 12-24.	9.6	39
123	Chemopreventive effect of a novel oleanane triterpenoid in a chemically induced rodent model of breast cancer. International Journal of Cancer, 2013, 133, 1054-1063.	5.1	38
124	Anthocyanin-Rich Black Currant Extract Suppresses the Growth of Human Hepatocellular Carcinoma Cells. Natural Product Communications, 2010, 5, 1934578X1000501.	0.5	37
125	Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Seminars in Cancer Biology, 2022, 80, 218-236.	9.6	37
126	Black Currant Anthocyanins Abrogate Oxidative Stress through Nrf2- Mediated Antioxidant Mechanisms in a Rat Model of Hepatocellular Carcinoma. Current Cancer Drug Targets, 2012, 12, 1244-1257.	1.6	37

#	Article	IF	Citations
127	Phosphorylation of Tyrosine 992, 1068, and 1086 Is Required for Conformational Change of the Human Epidermal Growth Factor Receptor C-Terminal Tail. Molecular Biology of the Cell, 1999, 10, 525-536.	2.1	35
128	Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma. Investigational New Drugs, 2011, 29, 380-391.	2.6	35
129	A broad-spectrum integrative design for cancer prevention and therapy: The challenge ahead. Seminars in Cancer Biology, 2015, 35, S1-S4.	9.6	35
130	Curcumin and Melanoma: From Chemistry to Medicine. Nutrition and Cancer, 2018, 70, 164-175.	2.0	35
131	Cancer Preventive and Therapeutic Potential of Banana and Its Bioactive Constituents: A Systematic, Comprehensive, and Mechanistic Review. Frontiers in Oncology, 2021, 11, 697143.	2.8	35
132	Antitumor activities of extracts from selected desert plants against HepG2 human hepatocellular carcinoma cells. Pharmaceutical Biology, 2013, 51, 668-674.	2.9	34
133	Terminalia bellirica (Gaertn.) roxb. (Bahera) in health and disease: A systematic and comprehensive review. Phytomedicine, 2020, 77, 153278.	5.3	34
134	Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Advances in Protein Chemistry and Structural Biology, 2021, 125, 215-257.	2.3	34
135	Current insights into functions of phospholipase A2 receptor in normal and cancer cells: More questions than answers. Seminars in Cancer Biology, 2019, 56, 116-127.	9.6	33
136	Resveratrol Exerts Differential Effects in Vitro and in Vivo against Ovarian Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2012, 13, 1333-1340.	1.2	33
137	Inhibitors of the PI3K/Akt/mTOR Pathway in Prostate Cancer Chemoprevention and Intervention. Pharmaceutics, 2021, 13, 1195.	4.5	32
138	Anthocyanins: Multi-Target Agents for Prevention and Therapy of Chronic Diseases. Current Pharmaceutical Design, 2018, 23, 6321-6346.	1.9	32
139	Adjunct use of honey in diabetes mellitus: A consensus or conundrum?. Trends in Food Science and Technology, 2020, 106, 254-274.	15.1	31
140	Black currant phytoconstituents exert chemoprevention of diethylnitrosamineâ€initiated hepatocarcinogenesis by suppression of the inflammatory response. Molecular Carcinogenesis, 2013, 52, 304-317.	2.7	30
141	Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Molecular Diagnosis and Therapy, 2018, 22, 179-201.	3.8	30
142	Cirsiliol Suppressed Epithelial to Mesenchymal Transition in B16F10 Malignant Melanoma Cells through Alteration of the PI3K/Akt/NF-κB Signaling Pathway. International Journal of Molecular Sciences, 2019, 20, 608.	4.1	30
143	Antitumor Potential of Marine and Freshwater Lectins. Marine Drugs, 2020, 18, 11.	4.6	30
144	The War against Tuberculosis: A Review of Natural Compounds and Their Derivatives. Molecules, 2020, 25, 3011.	3.8	30

#	Article	IF	CITATIONS
145	Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics, 2021, 13, 569.	4.5	30
146	Tea phytochemicals for breast cancer prevention and intervention: From bench to bedside and beyond. Seminars in Cancer Biology, 2017, 46, 33-54.	9.6	29
147	Sphingolipids as mediators of inflammation and novel therapeutic target in inflammatory bowel disease. Advances in Protein Chemistry and Structural Biology, 2020, 120, 123-158.	2.3	29
148	Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocompounds: A Tribute to Cancer Prevention and Intervention. Cancers, 2022, 14, 529.	3.7	29
149	Selenium in the Prevention and Treatment of Hepatocellular Carcinoma. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 338-345.	1.7	28
150	Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Seminars in Cancer Biology, 2021, 73, 265-293.	9.6	28
151	Dietary phytochemicals in the chemoprevention and treatment of hepatocellular carcinoma: in vivo evidence, molecular targets, and clinical relevance. Current Cancer Drug Targets, 2012, 12, 1191-232.	1.6	28
152	Trianthema portulacastrum Linn. Displays Anti-Inflammatory Responses during Chemically Induced Rat Mammary Tumorigenesis through Simultaneous and Differential Regulation of NF-κB and Nrf2 Signaling Pathways. International Journal of Molecular Sciences, 2015, 16, 2426-2445.	4.1	27
153	Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1394-1403.	4.9	27
154	Black Currant Anthocyanins Abrogate Oxidative Stress through Nrf2- Mediated Antioxidant Mechanisms in a Rat Model of Hepatocellular Carcinoma. Current Cancer Drug Targets, 2012, 12, 1244-1257.	1.6	26
155	Cancer Preventive and Curative Attributes of Plants of the Cactaceae Family: A Review. Planta Medica, 2013, 79, 713-722.	1.3	26
156	Cancer Chemoprevention by Flavonoids, Dietary Polyphenols and Terpenoids. Biointerface Research in Applied Chemistry, 2020, 11, 8502-8537.	1.0	26
157	Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla. Medicines (Basel, Switzerland), 2019, 6, 59.	1.4	24
158	Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Seminars in Cancer Biology, 2022, 80, 118-144.	9.6	24
159	Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers, 2021, 13, 1274.	3.7	24
160	Angiogenesis in Hepatocellular Carcinoma: A Potential Target for Chemoprevention and Therapy. Current Cancer Drug Targets, 2012, 12, 1095-1118.	1.6	24
161	Crateva adansonii DC, an African ethnomedicinal plant, exerts cytotoxicity in vitro and prevents experimental mammary tumorigenesis in vivo. Journal of Ethnopharmacology, 2016, 190, 183-199.	4.1	23
162	Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. Seminars in Cancer Biology, 2019, 56, 196-218.	9.6	23

#	Article	IF	CITATIONS
163	Apoptosis-inducing effects of extracts from desert plants in HepG2 human hepatocarcinoma cells. Asian Pacific Journal of Tropical Biomedicine, 2015, 5, 87-92.	1.2	22
164	Batzella, Crambe and Monanchora: Highly Prolific Marine Sponge Genera Yielding Compounds with Potential Applications for Cancer and Other Therapeutic Areas. Nutrients, 2018, 10, 33.	4.1	22
165	Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 2022, 97, 153909.	5.3	22
166	The golden spice curcumin in cancer. Journal of Cancer Research and Therapeutics, 2022, 18, 19-26.	0.9	22
167	Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. Phytomedicine, 2022, 98, 153949.	5.3	21
168	Natural Products of Dietary Origin as Lead Compounds in Virtual Screening and Drug Design. Current Pharmaceutical Biotechnology, 2012, 13, 117-124.	1.6	20
169	Pomegranate (Punica granatum L.) and Metabolic Syndrome Risk Factors and Outcomes: A Systematic Review of Clinical Studies. Nutrients, 2022, 14, 1665.	4.1	20
170	Health-promoting and disease-preventive potential of Trianthema portulacastrum Linn. (Gadabani)—An Indian medicinal and dietary plant. Journal of Integrative Medicine, 2016, 14, 84-99.	3.1	19
171	Ficus umbellata Vahl. (Moraceae) Stem Bark Extracts Exert Antitumor Activities In Vitro and In Vivo. International Journal of Molecular Sciences, 2017, 18, 1073.	4.1	19
172	The analgesic potential of glycosides derived from medicinal plants. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 387-401.	2.0	19
173	Guava (<i>Psidium guajava</i> L.): a glorious plant with cancer preventive and therapeutic potential. Critical Reviews in Food Science and Nutrition, 2023, 63, 192-223.	10.3	19
174	Mustard Seed (Brassica nigra) Extract Exhibits Antiproliferative Effect against Human Lung Cancer Cells through Differential Regulation of Apoptosis, Cell Cycle, Migration, and Invasion. Molecules, 2020, 25, 2069.	3.8	18
175	Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacological Research, 2021, 166, 105487.	7.1	18
176	Trianthema portulacastrum Linn. exerts chemoprevention of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 768, 107-118.	1.0	17
177	Stimulation of tissue repair byMikania cordata root extract in carbon tetrachloride-induced liver injury in mice. Phytotherapy Research, 1993, 7, 103-105.	5.8	16
178	Simultaneous disruption of estrogen receptor and Wnt \hat{l}^2 -catenin signaling is involved in methyl amooranin-mediated chemoprevention of mammary gland carcinogenesis in rats. Molecular and Cellular Biochemistry, 2013, 384, 239-250.	3.1	16
179	On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Marine Drugs, 2020, 18, 544.	4.6	16
180	The Antioxidant and Antihyperglycemic Activities of Bottlebrush Plant (Callistemon lanceolatus) Stem Extracts. Medicines (Basel, Switzerland), 2020, 7, 11.	1.4	16

#	Article	IF	CITATIONS
181	Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacological Research, 2022, 177, 105961.	7.1	16
182	Targeting transforming growth factorâ€ÃŸ signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clinical and Translational Medicine, 2022, 12, e795.	4.0	16
183	Protective Effects ofMikania cordataRoot Extract Against Physical and Chemical Factors-Induced Gastric Erosions in Experimental Animals. Planta Medica, 1994, 60, 110-113.	1.3	15
184	A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells. International Journal of Molecular Sciences, 2016, 17, 1604.	4.1	15
185	Protective effect of Echinacea purpurea (Immulant) against cisplatin-induced immunotoxicity in rats. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 233-241.	2.0	15
186	Targeting Hippo signaling pathway by phytochemicals in cancer therapy. Seminars in Cancer Biology, 2022, 80, 183-194.	9.6	15
187	Diabetes Mellitus and Male Aging: Pharmacotherapeutics and Clinical Implications. Current Pharmaceutical Design, 2017, 23, 4475-4483.	1.9	15
188	Effects of Human Placental Extract on Brain Monoamines and Monoamine Oxidase Activity in Rats Tohoku Journal of Experimental Medicine, 1995, 176, 17-24.	1.2	14
189	Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2020, 21, 6787.	4.1	14
190	Evaluation of analgesic and anti-inflammatory activities and molecular docking analysis of steroidal lactones from Datura stramonium L Phytomedicine, 2021, 89, 153621.	5.3	14
191	Effects of resveratrol supplementation on bone biomarkers: a systematic review and metaâ€analysis. Annals of the New York Academy of Sciences, 2019, 1457, 92-103.	3.8	13
192	Sequential activation of Elk-1/Egr-1/GADD45α by arsenic. Oncotarget, 2014, 5, 3862-3870.	1.8	13
193	Angioprevention is Implicated in Resveratrol Chemoprevention of Experimental Hepatocarcinogenesis. Journal of Carcinogenesis & Mutagenesis, 2010, 01, .	0.3	13
194	Modulation of TLR/NF- ¹² B/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Frontiers in Oncology, 2022, 12, 834072.	2.8	13
195	Flexion of Nrf2 by tea phytochemicals: A review on the chemopreventive and chemotherapeutic implications. Pharmacological Research, 2022, 182, 106319.	7.1	13
196	Anticarcinogenic biological response of Mikania cordata: reflections in hepatic biotransformation systems. Cancer Letters, 1994, 81, 193-200.	7.2	12
197	Editorial [Hot Topic (2): Current Advances in Cancer Prevention and Treatment by Natural Products (Guest Editor: Anupam Bishayee, M.Pharm., Ph.D.)]. Current Pharmaceutical Biotechnology, 2012, 13, 115-116.	1.6	12
198	Pharmacophore studies of 1, 3, 4-oxadiazole nucleus: Lead compounds as \hat{l} ±-glucosidase inhibitors. Food and Chemical Toxicology, 2019, 130, 207-218.	3.6	12

#	Article	IF	CITATIONS
199	Epigenetic Effects of Curcumin in Cancer Prevention. , 2019, , 107-128.		12
200	Arsenal of Phytochemicals to Combat Against Arsenic-Induced Mitochondrial Stress and Cancer. Antioxidants and Redox Signaling, 2020, 33, 1230-1256.	5.4	12
201	Role of histone acetyltransferase inhibitors in cancer therapy. Advances in Protein Chemistry and Structural Biology, 2021, 125, 149-191.	2.3	12
202	Unlocking the Secrets of Cancer Stem Cells with \hat{I}^3 -Secretase Inhibitors: A Novel Anticancer Strategy. Molecules, 2021, 26, 972.	3.8	12
203	5-Lipoxygenase and Cyclooxygenase Inhibitory Dammarane Triterpenoid 1 from Borassus flabellifer Seed Coat Inhibits Tumor Necrosis Factor-& Seed Coat Inhibits Tumor Necrosis Factor-& Secretion in LPSInduced THP-1 Human Monocytes and Induces Apoptosis in MIA PaCa-2 Pancreatic Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry. 2015, 15, 1066-1077.	1.7	12
204	A systematic review on potential anticancer activities of Ficus carica L. with focus on cellular and molecular mechanisms. Phytomedicine, 2022, , 154333.	5. 3	12
205	Trianthema portulacastrum affords antihepatotoxic activity against carbon tetrachloride-induced chronic liver damage in mice: reflection in subcellular levels. Phytotherapy Research, 1997, 11, 216-221.	5.8	11
206	Suppression of inflammatory cascade is implicated in methyl amooraninâ€mediated inhibition of experimental mammary carcinogenesis. Molecular Carcinogenesis, 2014, 53, 999-1010.	2.7	11
207	Synthesis of Saccharumoside-B analogue with potential of antiproliferative and pro-apoptotic activities. Scientific Reports, 2017, 7, 8309.	3.3	11
208	Assessment of the antidiabetic potentiality of glyburide loaded glyceryl monostearate solid lipid nanoparticles. Journal of Drug Delivery Science and Technology, 2020, 55, 101451.	3.0	11
209	Divergence of Intracellular Trafficking of Sphingosine Kinase 1 and Sphingosine-1-Phosphate Receptor 3 in MCF-7 Breast Cancer Cells and MCF-7-Derived Stem Cell-Enriched Mammospheres. International Journal of Molecular Sciences, 2021, 22, 4314.	4.1	11
210	CArG-driven GADD45α activated by resveratrol inhibits lung cancer cells. Genes and Cancer, 2015, 6, 220-230.	1.9	11
211	Dietary Phytochemicals in the Chemoprevention and Treatment of Hepatocellular Carcinoma: In Vivo Evidence, Molecular Targets, and Clinical Relevance. Current Cancer Drug Targets, 2012, 12, 1191-1232.	1.6	11
212	Increased expression of ZNF 703 in breast cancer tissue: An opportunity for RNAi–NSAID combinatorial therapy. Biotechnology and Applied Biochemistry, 2019, 66, 808-814.	3.1	10
213	MicroRNAs and Long Noncoding RNAs as Novel Therapeutic Targets in Estrogen Receptor-Positive Breast and Ovarian Cancers. International Journal of Molecular Sciences, 2021, 22, 4072.	4.1	9
214	Can Probiotics Cure Inflammatory Bowel Diseases?. Current Pharmaceutical Design, 2016, 22, 904-917.	1.9	9
215	Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochemical Pharmacology, 2022, 199, 114989.	4.4	9
216	<i>Psidium guajava</i> L.: A Systematic Review of the Multifaceted Health Benefits and Economic Importance. Food Reviews International, 2023, 39, 4333-4363.	8.4	8

#	Article	lF	CITATIONS
217	A novel synthetic oleanane triterpenoid suppresses adhesion, migration, and invasion of highly metastatic melanoma cells by modulating gelatinase signaling axis. Molecular Carcinogenesis, 2015, 54, 654-667.	2.7	7
218	Goji Berry Fruit Extracts Suppress Proliferation of Triple-Negative Breast Cancer Cells by Inhibiting EGFR-Mediated ERK/MAPK and PI3K/Akt Signaling Pathways. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	7
219	Limonoids: Structure–Activity Relationship Studies and Anticancer Properties. Studies in Natural Products Chemistry, 2018, , 375-399.	1.8	7
220	Effect of pomegranate juice on vascular adhesion factors: A systematic review and meta-analysis. Phytomedicine, 2021, 80, 153359.	5.3	7
221	<scp>Healthâ€promoting</scp> and <scp>diseaseâ€mitigating</scp> potential of <i>Verbascum thapsus</i> L. (common mullein): A review. Phytotherapy Research, 2022, 36, 1507-1522.	5.8	6
222	A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and Pl3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Current Oncology, 2022, 29, 2326-2349.	2.2	6
223	Therapeutic targets of natural products for the management of cardiovascular symptoms of coronavirus disease 2019. Phytotherapy Research, 2021, 35, 5417-5426.	5.8	5
224	Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers, 2022, 14, 3278.	3.7	5
225	Anti-Stress Potential of Mikania cordata Root Extract in Mice. International Journal of Pharmacognosy, 1994, 32, 126-134.	0.2	4
226	Natural Products for Cancer Prevention and Therapy: Progress, Pitfalls and Promise. Proceedings (mdpi), 2017, 1 , .	0.2	4
227	Jackfruit (<i>Artocarpus heterophyllus</i> Lam.) in health and disease: a critical review. Critical Reviews in Food Science and Nutrition, 2023, 63, 6344-6378.	10.3	4
228	Editorial: recent advances in the prevention and therapy of hepatocellular carcinoma. Current Cancer Drug Targets, 2012, 12, 1043-4.	1.6	4
229	Clinical potential of long non-coding RNA LINC01133 as a promising biomarker and therapeutic target in cancers. Biomarkers in Medicine, 2022, 16, 349-369.	1.4	4
230	Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy. Current Molecular Pharmacology, 2022, 15, .	1.5	4
231	Papaya (<i>Carica papaya </i> L.) for cancer prevention: Progress and promise. Critical Reviews in Food Science and Nutrition, 2023, 63, 10499-10519.	10.3	4
232	Conformational Analysis of the Phosphorylated Epidermal Growth Factor Receptor. Bioscience Reports, 1999, 19, 397-402.	2.4	3
233	Angiogenesis in Hepatocellular Carcinoma: A Potential Target for Chemoprevention and Therapy. Current Cancer Drug Targets, 2012, 12, 1095-1118.	1.6	3
234	Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacological Research, 2018, 133, 213-214.	7.1	3

#	Article	IF	CITATIONS
235	The Epigenetic Targets of Berry Anthocyanins in Cancer Prevention. , 2019, , 129-148.		3
236	Ginkgolic Acids Confer Potential Anticancer Effects by Targeting Pro- Inflammatory and Oncogenic Signaling Molecules. Current Molecular Pharmacology, 2021, 14, 806-822.	1.5	3
237	Editorial [Hot Topic: Recent Advances in the Prevention and Therapy of Hepatocellular Carcinoma]. Current Cancer Drug Targets, 2012, 12, 1043-1044.	1.6	2
238	Pomegranate-Derived Constituents as Inducers of Cell Death: Implications in Cancer Prevention and Therapy., 2012,, 33-47.		2
239	Abyssinone V-4′ Methyl Ether, a Flavanone Isolated from <i>Erythrina droogmansiana</i> , Exhibits Cytotoxic Effects on Human Breast Cancer Cells by Induction of Apoptosis and Suppression of Invasion. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-14.	1.2	2
240	MicroRNAs in Cancer Therapy: From Bench to Bedside. Current Cancer Therapy Reviews, 2010, 6, 157-162.	0.3	2
241	Genetic and Epigenetic Targets of Natural Dietary Compounds as Anticancer Agents., 2019,, 3-21.		2
242	Mechanism of Anti-stress Activity of Mikania cordata Root Extract in Albino Mice. International Journal of Pharmacognosy, 1995, 33, 215-221.	0.2	1
243	Targeting Arachidonic Acid Pathway-Associated NF-κB in Pancreatic Cancer. , 2017, , 403-411.		1
244	Modulation of the Nrf2 Signaling Pathway by Chemopreventive Dietary Phytoconstituents. , 2012, , 521-539.		1
245	Abstract A61: Mechanisms of resveratrolâ€mediated chemoprevention of hepatocellular carcinogenesis: Suppression of oxidative stress and inflammation. , 2010, , .		1
246	Pediatric acute lymphoblastic leukemia management using multitargeting bioactive natural compounds: A systematic and critical review. Pharmacological Research, 2022, 177, 106116.	7.1	1
247	Cancer Preventive and Curative Attributes of Plants of the Cactaceae Family: A Review. Planta Medica, 2013, 79, E2-E2.	1.3	O
248	Effects of <i>Paederia foetida</i> and its Bioactive Phytochemical Constituent Lupeol on Hepatic Phase I Drug Metabolism. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	0
249	Resveratrol attenuates hepatocellular carcinogenesis without affecting cardiac function. FASEB Journal, 2010, 24, 217.5.	0.5	O