Kristina Ivanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1992255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial, Antibiofilm, and Antiviral Farnesol-Containing Nanoparticles Prevent Staphylococcus aureus from Drug Resistance Development. International Journal of Molecular Sciences, 2022, 23, 7527.	4.1	6
2	Nano-Formulation Endows Quorum Quenching Enzyme-Antibiotic Hybrids with Improved Antibacterial and Antibiofilm Activities against Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2022, 23, 7632.	4.1	9
3	Antimicrobial lightweight materials and components. , 2021, , 469-502.		1
4	Novel Lignin-Capped Silver Nanoparticles against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2021, 13, 22098-22109.	8.0	67
5	Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment. Acta Biomaterialia, 2021, 134, 131-143.	8.3	42
6	Targeting Intracellular Mycobacteria Using Nanosized Niosomes Loaded with Antibacterial Agents. Nanomaterials, 2021, 11, 1984.	4.1	9
7	Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections. Materials Science and Engineering C, 2021, 131, 112518.	7.3	14
8	Simultaneous Ultrasound-Assisted Hybrid Polyzwitterion/Antimicrobial Peptide Nanoparticles Synthesis and Deposition on Silicone Urinary Catheters for Prevention of Biofilm-Associated Infections. Nanomaterials, 2021, 11, 3143.	4.1	5
9	Antibody-Enabled Antimicrobial Nanocapsules for Selective Elimination of <i>Staphylococcus aureus</i> . ACS Applied Materials & Interfaces, 2020, 12, 35918-35927.	8.0	28
10	Interaction of Silver-Lignin Nanoparticles With Mammalian Mimetic Membranes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 439.	4.1	15
11	Antibacterial Polyurethane Foams with Incorporated Lignin-Capped Silver Nanoparticles for Chronic Wound Treatment. Industrial & Engineering Chemistry Research, 2020, 59, 4504-4514.	3.7	54
12	Layerâ€Byâ€Layer Coating of Aminocellulose and Quorum Quenching Acylase on Silver Nanoparticles Synergistically Eradicate Bacteria and Their Biofilms. Advanced Functional Materials, 2020, 30, 2001284.	14.9	63
13	Electrical Evaluation of Bacterial Virulence Factors Using Nanopores. ACS Applied Materials & Interfaces, 2019, 11, 13140-13146.	8.0	23
14	Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. Journal of Colloid and Interface Science, 2019, 543, 114-121.	9.4	33
15	Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Applied Microbiology and Biotechnology, 2018, 102, 2075-2089.	3.6	69
16	Antibacterial Coatings on Medical Devices. , 2018, , 487-507.		2
17	Layer-By-Layer Decorated Nanoparticles with Tunable Antibacterial and Antibiofilm Properties against Both Gram-Positive and Gram-Negative Bacteria. ACS Applied Materials & Interfaces, 2018, 10, 3314-3323.	8.0	66
18	Smart Sensing Fabrics for Live Bacteria Detection. Proceedings (mdpi), 2018, 2, .	0.2	2

KRISTINA IVANOVA

#	Article	IF	CITATIONS
19	Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. Biomacromolecules, 2018, 19, 3628-3636.	5.4	29
20	Inhibition of Quorum-Sensing: A New Paradigm in Controlling Bacterial Virulence and Biofilm Formation. , 2018, , 3-21.		3
21	Nanotransformation of Vancomycin Overcomes the Intrinsic Resistance of Gram-Negative Bacteria. ACS Applied Materials & Interfaces, 2017, 9, 15022-15030.	8.0	53
22	Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation. Process Biochemistry, 2017, 59, 116-122.	3.7	15
23	Innovative Approaches for Controlling Clinically Relevant Biofilms: Current Trends and Future Prospects. Current Topics in Medicinal Chemistry, 2017, 17, 1889-1914.	2.1	17
24	Innovative Approaches for Controlling Clinically Relevant Biofilms: Current Trends and Future Prospects. Current Topics in Medicinal Chemistry, 2017, , .	2.1	8
25	Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1448-1456.	3.4	34
26	Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2061-2069.	3.3	24
27	Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomaterialia, 2016, 33, 203-212.	8.3	84
28	Strategies for Silencing Bacterial Communication. , 2015, , 197-216.		3
29	Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters. ACS Applied Materials & Interfaces, 2015, 7, 27066-27077.	8.0	128
30	Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Applied Microbiology and Biotechnology, 2015, 99, 4373-4385.	3.6	92