Kristina Ivanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1992255/publications.pdf

Version: 2024-02-01

		516710	552781
30	998	16	26
papers	citations	h-index	g-index
30	30	30	1268
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters. ACS Applied Materials & Emp; Interfaces, 2015, 7, 27066-27077.	8.0	128
2	Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Applied Microbiology and Biotechnology, 2015, 99, 4373-4385.	3.6	92
3	Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomaterialia, 2016, 33, 203-212.	8.3	84
4	Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Applied Microbiology and Biotechnology, 2018, 102, 2075-2089.	3.6	69
5	Novel Lignin-Capped Silver Nanoparticles against Multidrug-Resistant Bacteria. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 22098-22109.	8.0	67
6	Layer-By-Layer Decorated Nanoparticles with Tunable Antibacterial and Antibiofilm Properties against Both Gram-Positive and Gram-Negative Bacteria. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3314-3323.	8.0	66
7	Layerâ€By‣ayer Coating of Aminocellulose and Quorum Quenching Acylase on Silver Nanoparticles Synergistically Eradicate Bacteria and Their Biofilms. Advanced Functional Materials, 2020, 30, 2001284.	14.9	63
8	Antibacterial Polyurethane Foams with Incorporated Lignin-Capped Silver Nanoparticles for Chronic Wound Treatment. Industrial & Engineering Chemistry Research, 2020, 59, 4504-4514.	3.7	54
9	Nanotransformation of Vancomycin Overcomes the Intrinsic Resistance of Gram-Negative Bacteria. ACS Applied Materials & Discrete Resistance of Gram-Negative Bacteria.	8.0	53
10	Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment. Acta Biomaterialia, 2021, 134, 131-143.	8.3	42
11	Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1448-1456.	3.4	34
12	Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. Journal of Colloid and Interface Science, 2019, 543, 114-121.	9.4	33
13	Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. Biomacromolecules, 2018, 19, 3628-3636.	5.4	29
14	Antibody-Enabled Antimicrobial Nanocapsules for Selective Elimination of <i>Staphylococcus aureus</i> . ACS Applied Materials & Samp; Interfaces, 2020, 12, 35918-35927.	8.0	28
15	Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2061-2069.	3.3	24
16	Electrical Evaluation of Bacterial Virulence Factors Using Nanopores. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13140-13146.	8.0	23
17	Innovative Approaches for Controlling Clinically Relevant Biofilms: Current Trends and Future Prospects. Current Topics in Medicinal Chemistry, 2017, 17, 1889-1914.	2.1	17
18	Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation. Process Biochemistry, 2017, 59, 116-122.	3.7	15

#	Article	IF	CITATIONS
19	Interaction of Silver-Lignin Nanoparticles With Mammalian Mimetic Membranes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 439.	4.1	15
20	Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections. Materials Science and Engineering C, 2021, 131, 112518.	7.3	14
21	Targeting Intracellular Mycobacteria Using Nanosized Niosomes Loaded with Antibacterial Agents. Nanomaterials, 2021, 11, 1984.	4.1	9
22	Nano-Formulation Endows Quorum Quenching Enzyme-Antibiotic Hybrids with Improved Antibacterial and Antibiofilm Activities against Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2022, 23, 7632.	4.1	9
23	Innovative Approaches for Controlling Clinically Relevant Biofilms: Current Trends and Future Prospects. Current Topics in Medicinal Chemistry, 2017, , .	2.1	8
24	Antibacterial, Antibiofilm, and Antiviral Farnesol-Containing Nanoparticles Prevent Staphylococcus aureus from Drug Resistance Development. International Journal of Molecular Sciences, 2022, 23, 7527.	4.1	6
25	Simultaneous Ultrasound-Assisted Hybrid Polyzwitterion/Antimicrobial Peptide Nanoparticles Synthesis and Deposition on Silicone Urinary Catheters for Prevention of Biofilm-Associated Infections. Nanomaterials, 2021, 11, 3143.	4.1	5
26	Strategies for Silencing Bacterial Communication. , 2015, , 197-216.		3
27	Inhibition of Quorum-Sensing: A New Paradigm in Controlling Bacterial Virulence and Biofilm Formation. , 2018, , 3-21.		3
28	Antibacterial Coatings on Medical Devices. , 2018, , 487-507.		2
29	Smart Sensing Fabrics for Live Bacteria Detection. Proceedings (mdpi), 2018, 2, .	0.2	2
30	Antimicrobial lightweight materials and components. , 2021, , 469-502.		1