
Marie-Pierre Belleville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1992045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serial fractionation of spent brewer's yeast protein hydrolysate by ultrafiltration: A peptide-rich product with low RNA content. Journal of Food Engineering, 2022, 312, 110737.	2.7	15
2	Experimental and modeling of tetracycline degradation in water in a flow-through enzymatic monolithic reactor. Environmental Science and Pollution Research, 2022, 29, 75896-75906.	2.7	2
3	A novel process for the covalent immobilization of laccases on silica gel and its application for the elimination of pharmaceutical micropollutants. Environmental Science and Pollution Research, 2021, 28, 25579-25593.	2.7	20
4	Ultrafiltration performance of spent brewer's yeast protein hydrolysate: Impact of pH and membrane material on fouling. Journal of Food Engineering, 2021, 302, 110569.	2.7	15
5	Membrane Fractionation of Protein Hydrolysates from By-Products: Recovery of Valuable Compounds from Spent Yeasts. Membranes, 2021, 11, 23.	1.4	25
6	Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food Chemistry, 2020, 319, 126600.	4.2	20
7	Spent brewer's yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World Journal of Microbiology and Biotechnology, 2020, 36, 95.	1.7	45
8	Synthesis of binderless FAU-X (13X) monoliths with hierarchical porosity. Microporous and Mesoporous Materials, 2019, 281, 57-65.	2.2	13
9	Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food and Bioproducts Processing, 2019, 115, 175-184.	1.8	41
10	Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study. Process Biochemistry, 2019, 78, 123-131.	1.8	66
11	Optimal design of industrial scale continuous process for fractionation by membrane technologies of protein hydrolysate derived from fish wastes. Separation and Purification Technology, 2018, 197, 137-146.	3.9	20
12	Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. International Journal of Biological Macromolecules, 2018, 108, 837-844.	3.6	113
13	Membrane Technologies for Fruit Juice Processing. Food Engineering Series, 2018, , 211-248.	0.3	2
14	Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Frontiers in Nutrition, 2018, 5, 130.	1.6	95
15	Removal of Endocrine Disrupting Chemicals in Wastewater by Enzymatic Treatment with Fungal Laccases. Organic Process Research and Development, 2017, 21, 480-491.	1.3	74
16	Methane hydroxylation by Methylosinus trichosporium OB3b: Monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor. Biotechnology and Bioprocess Engineering, 2016, 21, 283-293.	1.4	13
17	Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – Degradation of compounds does not always eliminate toxicity. Bioresource Technology, 2016, 219, 500-509.	4.8	142
18	Erythromycin degradation by esterase (EreB) in enzymatic membrane reactors. Biochemical Engineering Journal, 2016, 114, 70-78.	1.8	33

#	Article	IF	CITATIONS
19	In Silico Evaluation of Ultrafiltration and Nanofiltration Membrane Cascades for Continuous Fractionation of Protein Hydrolysate from Tuna Processing Byproduct. Industrial & Engineering Chemistry Research, 2016, 55, 7493-7504.	1.8	8
20	Production of Interesting Peptide Fractions by Enzymatic Hydrolysis of Tuna Dark Muscle By-Product Using Alcalase. Journal of Aquatic Food Product Technology, 2016, 25, 251-264.	0.6	8
21	Alkane biohydroxylation: Interests, constraints and future developments. Journal of Biotechnology, 2016, 222, 117-142.	1.9	23
22	Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents. Water Research, 2015, 73, 118-131.	5.3	64
23	Sweep gas membrane distillation in a membrane contactor with metallic hollow-fibers. Journal of Membrane Science, 2015, 493, 167-178.	4.1	34
24	Enzymatic synthesis of butyl acetate in a packed bed reactor under liquid and supercritical conditions. Catalysis Today, 2015, 255, 3-9.	2.2	19
25	Design, economic evaluation and optimization of enzymatic membrane reactors for antibiotics degradation in wastewaters. Separation and Purification Technology, 2015, 156, 183-199.	3.9	27
26	Characterization of laccase-grafted ceramic membranes for pharmaceuticals degradation. Journal of Membrane Science, 2015, 476, 384-393.	4.1	68
27	Simulation and analysis of the performance of tubular enzymatic membrane reactors under different configurations, kinetics and mass transport conditions. Journal of Membrane Science, 2015, 473, 189-200.	4.1	14
28	Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water. Membranes, 2014, 4, 678-691.	1.4	5
29	A sustainable process for enzymatic saccharification of ionic liquid-pretreated cellulosic materials. Green Processing and Synthesis, 2014, 3, .	1.3	3
30	Membrane Bioprocesses for Pharmaceutical Micropollutant Removal from Waters. Membranes, 2014, 4, 692-729.	1.4	75
31	Design and optimization of an enzymatic membrane reactor for tetracycline degradation. Catalysis Today, 2014, 236, 146-152.	2.2	107
32	Enzymatic membrane reactor for full saccharification of ionic liquid-pretreated microcrystalline cellulose. Bioresource Technology, 2014, 151, 159-165.	4.8	38
33	Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Research International, 2014, 65, 453-461.	2.9	62
34	Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Research International, 2014, 65, 329-336.	2.9	87
35	An innovative membrane bioreactor for methane biohydroxylation. Bioresource Technology, 2014, 174, 42-52.	4.8	38
36	Development of a multichannel monolith large-scale enzymatic membrane and application in an immobilized enzymatic membrane reactor. Journal of Membrane Science, 2014, 455, 330-340.	4.1	19

#	Article	IF	CITATIONS
37	Fractionation of a tuna dark muscle hydrolysate by a two-step membrane process. Separation and Purification Technology, 2013, 108, 28-36.	3.9	48
38	Optimization and characterization of an enzymatic membrane for the degradation of phenolic compounds. Catalysis Today, 2012, 193, 49-56.	2.2	32
39	A cyclic process for full enzymatic saccharification of pretreated cellulose with full recovery and reuse of the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2012, 14, 2631.	4.6	49
40	Membrane contactor with hydrophobic metallic membranes: 1. Modeling of coupled mass and heat transfers in membrane evaporation. Journal of Membrane Science, 2010, 355, 112-125.	4.1	22
41	Membrane contactor with hydrophobic metallic membranes: 2. Study of operating parameters in membrane evaporation. Journal of Membrane Science, 2010, 355, 126-132.	4.1	21
42	Presence of rhamnogalacturonan II in the juices produced by enzymatic liquefaction of Agave pulquero stem (Agave mapisaga). Carbohydrate Polymers, 2009, 77, 870-875.	5.1	5
43	Study of the influence of the hydrodynamic parameters on the performance of an enzymatic membrane reactor. Journal of Membrane Science, 2008, 311, 147-152.	4.1	12
44	Elaboration, characterization and study of a new hybrid chitosan/ceramic membrane for affinity membrane chromatography. Journal of Membrane Science, 2008, 321, 81-89.	4.1	22
45	Analysis of the Main Components of the Aguamiel Produced by the Maguey-Pulquero (Agave mapisaga) throughout the Harvest Period. Journal of Agricultural and Food Chemistry, 2008, 56, 3682-3687.	2.4	78
46	The ripening and aging of noni fruits (Morinda citrifolia L.): microbiological flora and antioxidant compounds. Journal of the Science of Food and Agriculture, 2007, 87, 1710-1716.	1.7	23
47	Enzymatic membrane reactor involving a hybrid membrane in supercritical carbon dioxide. Journal of Membrane Science, 2007, 297, 98-103.	4.1	16
48	Evaluation of the cleaning of a new hydrophobic membrane for osmotic evaporation. Separation and Purification Technology, 2007, 55, 191-197.	3.9	25
49	Membrane engineering in biotechnology: quo vamus?. Trends in Biotechnology, 2007, 25, 242-246.	4.9	51
50	Study of a new membrane evaporator with a hydrophobic metallic membrane. Journal of Membrane Science, 2007, 289, 169-177.	4.1	27
51	New hydrophobic membranes for contactor processes — Applications to isothermal concentration of solutions. Desalination, 2006, 193, 280-285.	4.0	24
52	Study of a new metallic membrane evaporator. Desalination, 2006, 199, 185-187.	4.0	4
53	Affinity membrane chromatography with a hybrid chitosan/ceramic membrane. Desalination, 2006, 200, 470-471.	4.0	2
54	Enzymatic membrane reactor in supercritical carbon dioxide. Desalination, 2006, 200, 505-506.	4.0	3

#	Article	IF	CITATIONS
55	Biomolecule Applications for Membrane-Based Phase Contacting Systems. Chemical Engineering Research and Design, 2005, 83, 302-308.	2.7	24
56	A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support. Catalysis Today, 2005, 104, 313-317.	2.2	38
57	Progress in enzymatic membrane reactors – a review. Journal of Membrane Science, 2004, 242, 189-196.	4.1	260
58	Immobilization of lipase on a ceramic membrane: activity and stability. Journal of Membrane Science, 2004, 241, 161-166.	4.1	71
59	New hydrophobic membranes for osmotic evaporation process. Separation and Purification Technology, 2003, 32, 3-7.	3.9	27
60	Ultrafiltration within downstream processing: some process design considerations. Chemical Engineering and Processing: Process Intensification, 2003, 42, 299-309.	1.8	17
61	Tangential microfiltration of orange juice in bench pilot. Food Science and Technology, 2003, 23, 330-336.	0.8	2
62	A global approach of ultrafiltration of complex biological solutions. Separation and Purification Technology, 2002, 26, 283-293.	3.9	13
63	Modeling ultrafiltration of complex biological solutions. AICHE Journal, 2002, 48, 1727-1736.	1.8	13
64	Active membranes coated with immobilized Candida antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. Journal of Membrane Science, 2002, 201, 55-64.	4.1	69
65	CHARACTERIZATION AND PROPERTIES OF SUPPORTED PROTEIN MEMBRANES. Separation Science and Technology, 2001, 36, 3071-3089.	1.3	3
66	A comprehensive study of the loss of enzyme activity in a continuous membrane reactor - application to starch hydrolysis. Journal of Chemical Technology and Biotechnology, 2001, 76, 273-278.	1.6	26
67	Preparation of hybrid membranes for enzymatic reaction. Separation and Purification Technology, 2001, 25, 229-233.	3.9	33
68	Kinetics of cassava starch hydrolysis with Termamyl $\hat{A}^{ extsf{0}}$ enzyme. , 2000, 68, 71-77.		48
69	Kinetics of continuous starch hydrolysis in a membrane reactor. Biochemical Engineering Journal, 2000, 6, 233-238.	1.8	24
70	The effect of enzyme concentration and space time on the performance of a continuous recycle membrane reactor for one-step starch hydrolysis. Biochemical Engineering Journal, 2000, 5, 17-22.	1.8	41
71	Preparation of gelatin formed-in-place membranes: effect of working conditions and substrates. Journal of Membrane Science, 2000, 168, 159-165.	4.1	26
72	Title is missing!. Biotechnology Letters, 2000, 22, 771-775.	1.1	15

#	Article	IF	CITATIONS
73	Why on Earth Can People Need Continuous Recycle Membrane Reactors for Starch Hydrolysis?. Starch/Staerke, 1999, 51, 25-32.	1.1	21
74	Newly-designed proteinic membrane for low ultrafiltration. Journal of Membrane Science, 1997, 134, 163-170.	4.1	9
75	A linear arabinan from a red wine. Phytochemistry, 1993, 33, 227-229.	1.4	31
76	Fouling Colloids During Microporous Alumina Membrane Filtration of Wine. Journal of Food Science, 1992, 57, 396-400.	1.5	36
77	Polysaccharide Effects on Cross-Flow Microfiltration of Two Red Wines with a Microporous Alumina Membrane. Journal of Food Science, 1990, 55, 1598-1602.	1.5	41