Michel Boer

List of Publications by Citations

Source: https://exaly.com/author-pdf/1991784/michel-boer-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44,544 209 323 72 h-index g-index citations papers 361 5.7 5.11 55,395 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
323	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
322	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
321	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
320	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
319	The European Photon Imaging Camera on XMM-Newton: The MOS cameras. <i>Astronomy and Astrophysics</i> , 2001 , 365, L27-L35	5.1	1650
318	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
317	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
316	Advanced Virgo: a second-generation interferometric gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2015 , 32, 024001	3.3	1567
315	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
314	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
313	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
312	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101	7.4	837
311	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
310	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
309	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
308	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
307	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571

(2019-2018)

306	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
305	Properties of the Binary Black Hole Merger GW150914. <i>Physical Review Letters</i> , 2016 , 116, 241102	7.4	515
304	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016 , 818, L22	7.9	512
303	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. <i>Nature</i> , 2017 , 551, 67-70	50.4	444
302	Properties of the Binary Neutron Star Merger GW170817. <i>Physical Review X</i> , 2019 , 9,	9.1	423
301	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420
300	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
299	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
298	Detection of a Fray burst of very long duration and very high energy. <i>Nature</i> , 1994 , 372, 652-654	50.4	368
297	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
296	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. <i>Physical Review X</i> , 2021 , 11,	9.1	311
295	Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. <i>Pediatrics</i> , 2004 , 113, e448-57	7.4	284
294	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258
293	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
292	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. <i>Physical Review D</i> , 2020 , 102,	4.9	212
291	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
290	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. <i>Astrophysical Journal Letters</i> , 2020 , 900, L13	7.9	207
289	Tests of General Relativity with GW170817. <i>Physical Review Letters</i> , 2019 , 123, 011102	7.4	204

288	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194
287	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
286	Discovery of the short gamma-ray burst GRB 050709. <i>Nature</i> , 2005 , 437, 855-8	50.4	186
285	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
284	Global Characteristics of X-Ray Flashes and X-Ray R ich Gamma-Ray Bursts Observed byHETE-2. <i>Astrophysical Journal</i> , 2005 , 629, 311-327	4.7	171
283	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
282	Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif., November 17-23, 1996. <i>Tumor Biology</i> , 1998 , 19 Suppl 1, 1-20	2.9	147
281	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
280	Observation of Gravitational Waves from Two Neutron Star B lack Hole Coalescences. <i>Astrophysical Journal Letters</i> , 2021 , 915, L5	7.9	142
279	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
278	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
277	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
276	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOB FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
275	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. Astrophysical Journal Letters, 2017 , 850, L39	7.9	127
274	THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?. <i>Astrophysical Journal</i> , 2013 , 766, 30	4.7	126
273	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
272	Search for the isotropic stochastic background using data from Advanced LIGOE second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
271	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119	4.7	109

(2017-2017)

270	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
269	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. <i>Publications of the Astronomical Society of Australia</i> , 2017 , 34,	5.5	99
268	The XMM-Newton Serendipitous Survey. Astronomy and Astrophysics, 2001, 365, L51-L59	5.1	99
267	Spectral analysis of 35 GRBs/XRFs observed with HETE-2/FREGATE. <i>Astronomy and Astrophysics</i> , 2003 , 400, 1021-1030	5.1	97
266	XMM-Newton observation of the distant (\$vec{z=0.6}\$) galaxy cluster RXII1120.1+4318. <i>Astronomy and Astrophysics</i> , 2002 , 390, 27-38	5.1	96
265	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
264	High Energy Transient Explorer 20bservations of the Extremely Soft X-Ray Flash XRF 020903. <i>Astrophysical Journal</i> , 2004 , 602, 875-885	4.7	94
263	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
262	The THESEUS space mission concept: science case, design and expected performances. <i>Advances in Space Research</i> , 2018 , 62, 191-244	2.4	90
261	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
2 60	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	4.9	81
259	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. <i>Physical Review D</i> , 2021 , 103,	4.9	81
258	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
257	A guide to LIGON irgo detector noise and extraction of transient gravitational-wave signals. <i>Classical and Quantum Gravity</i> , 2020 , 37, 055002	3.3	78
256	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77
255	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
254	Detection of a Very Bright Optical Flare from the Gamma-Ray Burst GRB 050904 at Redshift 6.29. <i>Astrophysical Journal</i> , 2006 , 638, L71-L74	4.7	76
253	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74

252	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74
251	Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
250	A new type of repetitive behavior in a high-energy transient. Astrophysical Journal, 1987, 320, L111	4.7	71
249	Model comparison from LIGON irgo data on GW170817 binary components and consequences for the merger remnant. <i>Classical and Quantum Gravity</i> , 2020 , 37, 045006	3.3	69
248	Genotype-phenotype correlation in adult-onset acid maltase deficiency. <i>Annals of Neurology</i> , 1995 , 38, 450-4	9.4	69
247	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
246	Is episialin/MUC1 involved in breast cancer progression?. Cancer Letters, 1995, 90, 27-33	9.9	67
245	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
244	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
243	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015\(\textit{0017}\) LIGO Data. <i>Astrophysical Journal</i> , 2019 , 879, 10	4.7	63
242	Scientific highlights of the HETE-2 mission. New Astronomy Reviews, 2004, 48, 423-430	7.9	63
241	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
240	Localization, time histories, and energy spectra of a new type of recurrent high-energy transient source. <i>Astrophysical Journal</i> , 1987 , 320, L105	4.7	62
239	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
238	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60
237	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
236	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59
235	THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES. Astrophysical Journal, 2013 , 779, 66	4.7	59

(2021-2009)

234	EARLY OPTICAL OBSERVATIONS OF GAMMA-RAY BURSTS BY THE TAROT TELESCOPES: PERIOD 2001-2008. <i>Astronomical Journal</i> , 2009 , 137, 4100-4108	4.9	59	
233	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58	
232	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57	
231	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54	
230	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54	
229	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54	
228	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54	
227	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 227, 14	8	52	
226	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51	
225	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50	
224	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50	
223	Stellar evolution through the ages: period variations in galactic RRab stars as derived from the GEOS database and TAROT telescopes. <i>Astronomy and Astrophysics</i> , 2007 , 476, 307-316	5.1	50	
222	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49	
221	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49	
220	HETEObservations of the Gamma-Ray Burst GRB 030329: Evidence for an Underlying Soft X-Ray Component. <i>Astrophysical Journal</i> , 2004 , 617, 1251-1257	4.7	48	
219	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47	
218	Intrinsic properties of a complete sample of HETE-2 gamma-ray bursts. <i>Astronomy and Astrophysics</i> , 2008 , 491, 157-171	5.1	46	
217	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46	

216	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209	2.6	45
215	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45
214	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
213	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43
212	A high-statistics measurement of transverse spin effects in dihadron production from muonproton semi-inclusive deep-inelastic scattering. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2014 , 736, 124-131	4.2	43
211	SMM hard X-ray observations of the soft gamma-ray repeater 1806-20. <i>Astrophysical Journal</i> , 1987 , 322, L21	4.7	43
210	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
209	The complex light curve of the afterglow of GRB071010A. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 347-356	4.3	41
208	Continuous optical monitoring during the prompt emission of GRB 060111B. <i>Astronomy and Astrophysics</i> , 2006 , 451, L39-L42	5.1	41
207	The ULYSSES Supplement to the BATSE 3B Catalog of Cosmic Gamma-Ray Bursts. <i>Astrophysical Journal, Supplement Series</i> , 1999 , 120, 399-408	8	40
206	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39
205	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39
204	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
203	The XMM-[project. Astronomy and Astrophysics, 2003, 412, L37-L41	5.1	39
202	Energy Release and Dissipation during Giant Solar Flares. Astrophysical Journal, 1995, 446, L47	4.7	39
201	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38
200	SUPPLEMENT: IIOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[[2016, ApJL, 826, L13]. Astrophysical Journal, Supplement Series, 2016 , 225, 8	8	38
199	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37

(2019-2018)

198	Research, 2018 , 62, 662-682	2.4	37	
197	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36	
196	The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA. <i>Astrophysical Journal</i> , 2008 , 674, 357-370	4.7	36	
195	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. <i>Physical Review D</i> , 2020 , 101,	4.9	36	
194	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35	
193	HETE-2Localization and Observation of the Bright, X-Rayfich Gamma-Ray Burst GRB 021211. <i>Astrophysical Journal</i> , 2003 , 599, 387-393	4.7	35	
192	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35	
191	Capturing the electromagnetic counterparts of binary neutron star mergers through low-latency gravitational wave triggers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 121-139	4.3	34	
190	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34	
189	Simultaneous event detection rates by electromagnetic and gravitational wave detectors in the advanced era of LIGO and Virgo. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 649-655	4.3	34	
188	The gamma-ray burst 050904: evidence for a termination shock?. <i>Astronomy and Astrophysics</i> , 2007 , 462, 565-573	5.1	33	
187	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo® third observing run. <i>Physical Review D</i> , 2021 , 104,	4.9	33	
186	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32	
185	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32	
184	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32	
183	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32	
182	Network synthesis localization of two soft gamma repeaters. <i>Astrophysical Journal</i> , 1994 , 431, L31	4.7	32	
181	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31	

180	Early re-brightening of the afterglow of GRBID50525a. Astronomy and Astrophysics, 2005, 439, L35-L38	5.1	31
179	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
178	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
177	ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?. Astrophysical Journal, 2015 , 800, 16	4.7	30
176	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
175	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
174	PRE-DISCOVERY OBSERVATIONS OF CoRoT-1b AND CoRoT-2b WITH THE BEST SURVEY. Astronomical Journal, 2010 , 139, 53-58	4.9	29
173	Robotic Observations of the Sky with TAROT: 2004\(\mathbb{Q}\)007. <i>Publications of the Astronomical Society of the Pacific</i> , 2008 , 120, 1298-1306	5	29
172	XMM-Newton first-light observations of the Hickson galaxy group 16. <i>Astronomy and Astrophysics</i> , 2001 , 365, L110-L115	5.1	29
171	The first six months of the Advanced LIGOE and Advanced VirgoE third observing run with GRANDMA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 3904-3927	4.3	29
170	GRANDMA observations of advanced LIGOE and advanced VirgoE third observational campaign. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 5518-5539	4.3	29
169	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
168	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
167	A search for the radio counterpart to the 1994 March 1 gamma-ray burst. <i>Astrophysical Journal</i> , 1994 , 437, L43	4.7	28
166	The Ulysses Supplement to the BATSE 4Br Catalog of Cosmic Gamma-Ray Bursts. <i>Astrophysical Journal, Supplement Series</i> , 1999 , 122, 497-501	8	28
165	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
164	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
163	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26

(2021-2014)

162	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005\(\bar{2}\)010. <i>Physical Review D</i> , 2014 , 89,	4.9	26	
161	GRB 010921: Localization and Observations by the [ITAL]High Energy Transient Explorer[/ITAL] Satellite. <i>Astrophysical Journal</i> , 2002 , 571, L127-L130	4.7	26	
160	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25	
159	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25	
158	GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST. Astrophysical Journal, 2012 , 748, 59	4.7	25	
157	REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION. <i>Astrophysical Journal</i> , 2015 , 799, 69	4.7	24	
156	Stereoscopic Observations of Solar Hard X-Ray Flares Made byUlyssesandYohkoh. <i>Astrophysical Journal</i> , 1998 , 500, 1003-1008	4.7	24	
155	Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at sNN=200, 62.4, 39, and 19.6 GeV. <i>Physical Review C</i> , 2017 , 96,	2.7	23	
154	The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education. <i>Publications of the Astronomical Society of Australia</i> , 2010 , 27, 331-339	5.5	23	
153	Decay properties of the X-ray afterglows of gamma-ray bursts. <i>Astronomy and Astrophysics</i> , 2005 , 430, 465-470	5.1	23	
152	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22	
151	14 years of experience with the artificial urinary sphincter in children and adolescents without spina bifida. <i>Journal of Urology</i> , 2006 , 176, 1821-5	2.5	22	
150	Early emission of rising optical afterglows: the case of GRB 060904B and GRB 070420. <i>Astronomy and Astrophysics</i> , 2008 , 483, 847-855	5.1	22	
149	A STEP: Towards a Large Photometric Survey for Exoplanets at DomeIC. <i>EAS Publications Series</i> , 2007 , 25, 225-232	0.2	22	
148	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22	
147	High-Energy Observations of XRF 030723: Evidence for an Off-Axis Gamma-Ray Burst?. <i>Astrophysical Journal</i> , 2005 , 621, 884-893	4.7	21	
146	TheXMM-Newton\$mathsf{Omega}\$ project. Astronomy and Astrophysics, 2005, 437, 31-38	5.1	21	
145	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21	

144	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
143	Optical and X-ray early follow-up of ANTARES neutrino alerts. <i>Journal of Cosmology and Astroparticle Physics</i> , 2016 , 2016, 062-062	6.4	20
142	INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS. Astrophysical Journal, Supplement Series, 2013, 207, 38	8	20
141	TAROT: Observing gamma-ray bursts "in progress[]Astronomy and Astrophysics, 1999, 138, 579-580		20
140	Rapid searches for counterparts of GRB 930131. Astrophysical Journal, 1994, 422, L71	4.7	20
139	THE ALL-SKY GEOS RR Lyr SURVEY WITH THE TAROT TELESCOPES: ANALYSIS OF THE BLAZHKO EFFECT. <i>Astronomical Journal</i> , 2012 , 144, 39	4.9	19
138	Gamma-Ray Burst Arrival Time Localizations: Simultaneous Observations by Mars Observer, Compton Gamma Ray Observatory, and Ulysses. <i>Astrophysical Journal, Supplement Series</i> , 1997 , 110, 157-161	8	19
137	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014	0.3	18
136	The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1111-1122	4.3	18
135	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18
134	TAROT: Robotic observatories for gamma-ray bursts and other sources. <i>Astronomische Nachrichten</i> , 2008 , 329, 275-277	0.7	18
133	Gamma-Ray Burst Arrival Time Localizations: Simultaneous Observations by Pioneer Venus Orbiter , Compton Gamma - Ray Observatory , and Ulysses. <i>Astrophysical Journal, Supplement Series</i> , 1998 , 118, 391-399	8	18
132	Gamma-Ray Burst Arrival-Time Localizations: Simultaneous Observations byUlysses,Pioneer Venus Orbiter, SIGMA, WATCH, and PHEBUS. <i>Astrophysical Journal</i> , 2000 , 533, 884-889	4.7	18
131	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17
130	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17
129	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. <i>Experimental Astronomy</i> , 2009 , 23, 67-89	1.3	17
128	A new algorithm for optical observations of space debris with the TAROT telescopes. <i>Advances in Space Research</i> , 2009 , 44, 1270-1278	2.4	17
127	The TAROT Suspected Variable Star Catalog. <i>Astronomical Journal</i> , 2007 , 133, 1470-1477	4.9	17

126	Third Interplanetary Network Localization, Time History, Fluence, Peak Flux, and Distance Lower Limit of the 1997 February 28 Gamma-Ray Burst. <i>Astrophysical Journal</i> , 1997 , 485, L1-L3	4.7	17	
125	Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. <i>Physical Review Letters</i> , 2020 , 125, 131101	7.4	17	
124	Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 2017 , 764, 1-10	4.2	16	
123	THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS. <i>Astrophysical Journal, Supplement Series</i> , 2011 , 196, 1	8	16	
122	RTML 🖟 standard for use of remote telescopes. Astronomy and Astrophysics, 2002, 395, 727-731	5.1	16	
121	Are Abell Clusters Correlated with Gamma-Ray Bursts?. <i>Astrophysical Journal</i> , 1997 , 479, L113-L115	4.7	16	
120	Testing gamma-ray burst models with the afterglow of GRB 090102. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	15	
119	Spectral-Lag Relations in GRB Pulses Detected with HETE-2. <i>Publication of the Astronomical Society of Japan</i> , 2010 , 62, 487-499	3.2	15	
118	X-Ray Afterglow Light Curves: Toward A Standard Candle?. Astrophysical Journal, 2008, 683, 620-629	4.7	15	
117	Generalized AA-amyloidosis in Siberian tigers (Panthera tigris altaica) with predominant renal medullary amyloid deposition. <i>Veterinary Pathology</i> , 1998 , 35, 70-4	2.8	15	
116	The signe II gamma-ray burst experiment aboard the prognoz 9 satellite. <i>Advances in Space Research</i> , 1986 , 6, 97-102	2.4	15	
115	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. <i>Physical Review D</i> , 2021 , 104,	4.9	15	
114	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. <i>Physical Review D</i> , 2021 , 103,	4.9	15	
113	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14	
112	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14	
111	A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission. <i>Astronomy and Astrophysics</i> , 2009 , 503, 783-795	5.1	14	
110	Status of CNES optical observations of space debris in geostationary orbit. Advances in Space			
	Research, 2004 , 34, 1143-1149	2.4	14	

108	The Hardness-Intensity Correlation in Bright Gamma-Ray Bursts. Astrophysical Journal, 1997, 490, L17-L	. 2.0 .7	14
107	Constraining the rate of GRB visible afterglows with the CFHTLS very wide survey. <i>Astronomy and Astrophysics</i> , 2007 , 464, L29-L32	5.1	13
106	Treatment of post-appendectomy intra-abdominal deep abscesses. <i>European Journal of Pediatric Surgery</i> , 2003 , 13, 393-7	1.9	13
105	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. <i>Astrophysical Journal Letters</i> , 2021 , 913, L27	7.9	13
104	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
103	Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2011 , 415, L26-L30	4.3	12
102	A robotic telescope network for space debris identification and tracking. <i>Advances in Space Research</i> , 2011 , 47, 402-410	2.4	12
101	OBSERVATION OF CORRELATED OPTICAL AND GAMMA EMISSIONS FROM GRB 081126. Astrophysical Journal, 2009 , 697, L18-L21	4.7	12
100	The TAROT observatory data management. Astronomy and Astrophysics, 1999, 138, 581-582		12
99	Possible Association of a Quiescent X-Ray Source with a Gamma-Ray Burster. <i>Astrophysical Journal</i> , 1996 , 464, 342	4.7	12
98	HETE-2Observation of Two Gamma-Ray Bursts atz> 3. Astrophysical Journal, 2005, 626, 292-297	4.7	12
97	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo® first three observing runs. <i>Physical Review D</i> , 2021 , 104,	4.9	12
96	In-Flight Performance and First Results of FREGATE. AIP Conference Proceedings, 2003,	О	11
95	Monoclonal antibodies against the nonmucin domain of MUC1/episialin. <i>Tumor Biology</i> , 1998 , 19 Suppl 1, 67-70	2.9	11
94	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
93	Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A. <i>Astrophysical Journal</i> , 2019 , 881, 12	4.7	10
92	A VARIABLE STAR CENSUS IN A PERSEUS FIELD. Astronomical Journal, 2011 , 142, 114	4.9	10
91	EPIC system onboard the ESA XMM 1996 ,		10

(2007-2021)

90	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 921, 80	4.7	10
89	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. <i>Classical and Quantum Gravity</i> , 2013 , 30, 055017	3.3	9
88	An Optically Dark GRB Observed by HETE-2: GRB 051022. <i>Publication of the Astronomical Society of Japan</i> , 2006 , 58, L35-L39	3.2	9
87	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. <i>Physical Review D</i> , 2022 , 105,	4.9	9
86	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9
85	Advanced Virgo Status. <i>Journal of Physics: Conference Series</i> , 2020 , 1342, 012010	0.3	8
84	MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS. Astrophysical Journal Letters, 2016 , 820, L24	7.9	8
83	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165013	3.3	8
82	The detection efficiency of on-axis short gamma-ray burst optical afterglows triggered by aLIGO/Virgo. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 3575-3580	4.3	8
81	A model for soft 日ay burst repeaters. <i>Nature</i> , 1989 , 337, 716-718	50.4	8
81 80	A model for soft Fray burst repeaters. <i>Nature</i> , 1989 , 337, 716-718 The presence of an additional fetal membrane and its function in the newborn guanaco (Lama quanaco e). <i>Theriogenology</i> , 1988 , 30, 437-9	50.4	8
	The presence of an additional fetal membrane and its function in the newborn guanaco (Lama		
80	The presence of an additional fetal membrane and its function in the newborn guanaco (Lama quanaco e). <i>Theriogenology</i> , 1988 , 30, 437-9 Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching	2.8	8
80 79	The presence of an additional fetal membrane and its function in the newborn guanaco (Lama quanaco e). <i>Theriogenology</i> , 1988 , 30, 437-9 Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537B910. <i>Astrophysical Journal</i> , 2021 , 922, 71	2.8	8
80 79 78	The presence of an additional fetal membrane and its function in the newborn guanaco (Lama quanaco e). <i>Theriogenology</i> , 1988 , 30, 437-9 Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537B910. <i>Astrophysical Journal</i> , 2021 , 922, 71 Tests with a Carlina-type diluted telescope. <i>Astronomy and Astrophysics</i> , 2012 , 539, A59 THE INTERPLANETARY NETWORK SUPPLEMENT TO THE HETE-2 GAMMA-RAY BURST CATALOG.	2.8 4.7 5.1	8 8 7
80 79 78 77	The presence of an additional fetal membrane and its function in the newborn guanaco (Lama quanaco e). <i>Theriogenology</i> , 1988 , 30, 437-9 Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537B910. <i>Astrophysical Journal</i> , 2021 , 922, 71 Tests with a Carlina-type diluted telescope. <i>Astronomy and Astrophysics</i> , 2012 , 539, A59 THE INTERPLANETARY NETWORK SUPPLEMENT TO THE HETE-2 GAMMA-RAY BURST CATALOG. <i>Astrophysical Journal</i> , <i>Supplement Series</i> , 2011 , 197, 34 THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BeppoSAX GAMMA-RAY BURST	2.8 4.7 5.1	8 8 7 7
80 79 78 77 76	The presence of an additional fetal membrane and its function in the newborn guanaco (Lama quanaco e). <i>Theriogenology</i> , 1988 , 30, 437-9 Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537B910. <i>Astrophysical Journal</i> , 2021 , 922, 71 Tests with a Carlina-type diluted telescope. <i>Astronomy and Astrophysics</i> , 2012 , 539, A59 THE INTERPLANETARY NETWORK SUPPLEMENT TO THE HETE-2 GAMMA-RAY BURST CATALOG. <i>Astrophysical Journal</i> , <i>Supplement Series</i> , 2011 , 197, 34 THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BeppoSAX GAMMA-RAY BURST CATALOGS. <i>Astrophysical Journal</i> , <i>Supplement Series</i> , 2010 , 191, 179-184	2.8 4.7 5.1 8	8 8 7 7

72	The prevalence and transmission to exotic equids (Equus quagga antiquorum, Equus przewalskii, Equus africanus) of intestinal nematodes in contaminated pasture in two wild animal parks. <i>Journal of Zoo and Wildlife Medicine</i> , 2001 , 32, 209-16	0.9	7
71	Limits on the early afterglow phase of gamma-ray burst sources from TAROT-1. <i>Astronomy and Astrophysics</i> , 2001 , 378, 76-81	5.1	7
70	ORIGIN: metal creation and evolution from the cosmic dawn. <i>Experimental Astronomy</i> , 2012 , 34, 519-54	91.3	6
69	The Influence of a Multi-disciplinary Meeting for Quality Assurance on Target Delineation in Radiotherapy Treatment Preparation. <i>International Journal of Radiation Oncology Biology Physics</i> , 2009 , 75, S452-S453	4	6
68	FAVOR (FAst Variability Optical Registration) Il wo-telescope complex for detection and investigation of short optical transients. <i>Astronomische Nachrichten</i> , 2004 , 325, 677-677	0.7	6
67	Agile telescopes to monitor optical transients and sky variability: From TAROT to ARAGO. <i>Astronomische Nachrichten</i> , 2001 , 322, 343-346	0.7	6
66	No Evidence for Gamma-Ray Burst/Abell Cluster or Gamma-Ray Burst/Radio-quiet Quasar Correlations. <i>Astrophysical Journal</i> , 1999 , 515, 497-499	4.7	6
65	The optical and X-ray content of the 1992 May 1 gamma-ray burst error box. <i>Astrophysical Journal, Supplement Series,</i> 1994 , 92, 655	8	6
64	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO Virgo Run O3a. <i>Astrophysical Journal</i> , 2021 , 915, 86	4.7	6
63	Can we quickly flag ultra-long gamma-ray bursts?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 2471-2476	4.3	5
62	Status of the Advanced Virgo gravitational wave detector. <i>International Journal of Modern Physics A</i> , 2017 , 32, 1744003	1.2	5
61	A Study of GRBs with Low-luminosity Afterglows. <i>Astrophysical Journal</i> , 2017 , 850, 117	4.7	5
60	HETE-2 Localization and Observations of the Gamma-Ray Burst GRB 020813. <i>Publication of the Astronomical Society of Japan</i> , 2005 , 57, 1031-1039	3.2	5
59	The CFHTLS real time analysis system: Bptically selected GRB afterglows[]Astronomy and Astrophysics, 2006 , 459, 465-475	5.1	5
58	XIPE: the x-ray imaging polarimetry explorer 2016 ,		5
57	GRB 141221A: gone is the wind. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 508-516	4.3	4
56	The Zadko Telescope: Exploring the Transient Universe. <i>Publications of the Astronomical Society of Australia</i> , 2017 , 34,	5.5	4
55	The Zadko telescope: A resource for science education enrichment. <i>Advances in Space Research</i> , 2011 , 47, 1922-1930	2.4	4

(1997-2006)

54	The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2006 , 567, 327-332	1.2	4	
53	Polioencephalomalacia in captive harbour seals (Phoca vitulina). <i>Transboundary and Emerging Diseases</i> , 2003 , 50, 145-50		4	
52	Ulysses observations of cosmic gamma-ray bursts. <i>Astrophysics and Space Science</i> , 1995 , 231, 227-230	1.6	4	
51	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	4	
50	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. <i>Astronomy and Astrophysics</i> ,	5.1	4	
49	The peak flux distribution of bright gamma-ray bursts measured with ULYSSES. <i>Astronomy and Astrophysics</i> , 1999 , 138, 421-422		4	
48	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003	0.3	4	
47	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGON Third Observing Run. <i>Astrophysical Journal</i> , 2021 , 923, 14	4.7	4	
46	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. <i>Physical Review D</i> , 2022 , 105,	4.9	4	
45	Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. <i>Galaxies</i> , 2017 , 5, 6	2	3	
44	Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2012 , 692, 184-187	1.2	3	
43	The TAROT archive: rising afterglows 2009 ,		3	
42	HETE-2 Observations of the X-Ray Flash XRF 040916. <i>Publication of the Astronomical Society of Japan</i> , 2007 , 59, 695-702	3.2	3	
41	Preliminary results of optical searches of IPN3 localizations. <i>Astrophysics and Space Science</i> , 1995 , 231, 289-292	1.6	3	
40	The CESR multi-mission radiation monitor. <i>IEEE Transactions on Nuclear Science</i> , 1995 , 42, 2010-2016	1.7	3	
39	Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths. <i>Astrophysical Journal</i> , 2019 , 886, 73	4.7	3	
38	The puzzling temporally variable optical and X-ray afterglow of GRB 101024A. <i>Astronomy and Astrophysics</i> , 2011 , 530, A74	5.1	2	
37	[ITAL]ROSAT[/ITAL] Detection and High-Precision Localization of X-Ray Sources in the 1978 November 19 Gamma-Ray Burst Error Box. <i>Astrophysical Journal</i> , 1997 , 481, L39-L41	4.7	2	

36	X-ray afterglow light curves: toward a standard candle?. AIP Conference Proceedings, 2008,	Ο	2
35	CADOR and TAROT: a virtual observatory 2008,		2
34	Scientific highlights of the HETE-2 mission. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2004 , 132, 279-288		2
33	Versatile scheduler for automatic telescopes 2002 , 4844, 262		2
32	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. <i>Classical and Quantum Gravity</i> , 2022 , 39, 045006	3.3	2
31	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
30	DDOTI: the deca-degree optical transient imager 2016 ,		2
29	Fast response electromagnetic follow-ups from low latency GW triggers. <i>Journal of Physics:</i> Conference Series, 2016 , 716, 012009	0.3	2
28	Constraints on dark photon dark matter using data from LIGOE and VirgoE third observing run. <i>Physical Review D</i> , 2022 , 105,	4.9	2
27	All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. <i>Physical Review D</i> , 2022 , 105,	4.9	2
26	Robotic Telescopes as Science Tools 2010 ,		1
25	Setting up ELP-OA: the polychromatic laser guide star demonstrator 2010 ,		1
24	Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO). <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2011 , 626-627, S183-S184	1.2	1
23	RAPID OPTICAL FOLLOW-UP OBSERVATIONS OF GAMMA-RAY BURSTS. <i>International Journal of Modern Physics Conference Series</i> , 2012 , 12, 48-57	0.7	1
22	Verifying the accuracy of the third interplanetary network: Localization of the bursting pulsar GRO J1744-28 by triangulation. <i>Advances in Space Research</i> , 1998 , 22, 1125-1128	2.4	1
21	Algorithms improvement in image processing for optical observations of artificial objects in geostationary orbit with the TAROT telescopes 2008 ,		1
20	The Polychromatic Laser Guide Star for tilt measurement: progress report of the demonstrator at Observatoire de Haute Provence 2007 , 6691, 197		1
19	The ECLAIRs micro-satellite for multi-wavelength studies of gamma-ray burst prompt emission. <i>IEEE Transactions on Nuclear Science</i> , 2005 , 52, 2778-2785	1.7	1

(2000-2001)

18	Flexible Automatic Scheduling for Autonomous Telescopes: The MAJORDOME. <i>Experimental Astronomy</i> , 2001 , 12, 33-48	1.3	1
17	The results of the MIR-KVANT in 1987🛮 989. Advances in Space Research, 1991, 11, 5-16	2.4	1
16	EXOSAT observations of two gamma-ray burst sources. Advances in Space Research, 1986, 6, 65-68	2.4	1
15	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	1
14	AROSATDeep Survey of Four Small Gamma-Ray Burst Error Boxes. <i>Astrophysical Journal</i> , 1999 , 524, 92-	97 .7	1
13	Modeling the Prompt Optical Emission of GRB 180325A: The Evolution of a Spike from the Optical to Gamma Rays. <i>Astrophysical Journal</i> , 2021 , 908, 39	4.7	1
12			
11	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGOVirgo Run O3b. <i>Astrophysical Journal</i> , 2022 , 928, 186	4.7	1
10	National Aures Observatory: A new multimessenger facility. <i>Journal of Physics: Conference Series</i> , 2019 , 1269, 012001	0.3	
9	The origin of the prompt optical emission in GRB 060111B. Advances in Space Research, 2011, 47, 1413-	14:145	
8	Gamma-ray bursts: how to find their distance?. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1998 , 60, 59-68		
7	Current and future activities in education and public outreach at the Observatoire de Haute Provence. <i>Advances in Space Research</i> , 2008 , 42, 1831-1836	2.4	
6	HETE-2 Observations of Gamma-Ray Bursts and Their Follow-Ups. <i>Progress of Theoretical Physics Supplement</i> , 2004 , 155, 279-286		
5	Early Results from HETE-2. International Astronomical Union Colloquium, 2001, 183, 149-154		
4	Combined fitting of Ulysses/COMPTEL GRB spectra. Astrophysics and Space Science, 1995, 231, 165-168	1.6	
3	X-ray observations of gamma-ray burst sources. <i>Astrophysics and Space Science</i> , 1990 , 169, 153-158	1.6	
2	The HUS solar flare and cosmic gamma-ray burst detector aboard the ULYSSES spacecraft. <i>Astrophysics and Space Science</i> , 1990 , 171, 323-327	1.6	
1	The TAROT CCD Camera. Astrophysics and Space Science Library, 2000, 339-343	0.3	