Francoise Argoul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1991743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking Rhythms Coherence From Polysomnographic Records: A Time-Frequency Approach. Frontiers in Applied Mathematics and Statistics, 2021, 7, .	0.7	3
2	Emergence of Log-Normal Type Distributions in Avalanche Processes in Living Systems: A Network Model. Frontiers in Applied Mathematics and Statistics, 2021, 6, .	0.7	6
3	Power-law and log-normal avalanche size statistics in random growth processes. Physical Review E, 2021, 104, L052101.	0.8	3
4	A new agarose-based microsystem to investigate cell response to prolonged confinement. Lab on A Chip, 2020, 20, 4016-4030.	3.1	8
5	Experimental evidence of a phase transition in the multifractal spectra of turbulent temperature fluctuations at a forest canopy top. Journal of Fluid Mechanics, 2020, 896, .	1.4	7
6	Multifractal Desynchronization of the Cardiac Excitable Cell Network During Atrial Fibrillation. II. Modeling. Frontiers in Physiology, 2019, 10, 480.	1.3	1
7	The Role of Nucleosome Positioning in Genome Function and Evolution. , 2018, , 41-79.		2
8	Evidence for DNA Sequence Encoding of an Accessible Nucleosomal Array across Vertebrates. Biophysical Journal, 2018, 114, 2308-2316.	0.2	8
9	A minimal rupture cascade model for living cell plasticity. New Journal of Physics, 2018, 20, 053057.	1.2	7
10	Fractional rheology of muscle precursor cells. Journal of Rheology, 2018, 62, 1347-1362.	1.3	1
11	Developmental and cancer-associated plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-replicating regions. Nucleic Acids Research, 2018, 46, 10157-10172.	6.5	30
12	Prestressed cells are prone to cytoskeleton failures under localized shear strain: an experimental demonstration on muscle precursor cells. Scientific Reports, 2018, 8, 8602.	1.6	10
13	Multifractal Desynchronization of the Cardiac Excitable Cell Network During Atrial Fibrillation. I. Multifractal Analysis of Clinical Data. Frontiers in Physiology, 2018, 8, 1139.	1.3	3
14	Dynamical study of \$\$mathbf{Na }_{{varvec{v}}\$ Na v channel excitability under mechanical stress. Biological Cybernetics, 2017, 111, 129-148.	0.6	2
15	Numerical Study of Novel Ratiometric Sensors Based on Plasmon–Exciton Coupling. Applied Spectroscopy, 2017, 71, 2377-2384.	1.2	9
16	Resonant Waveguide Imaging of Living Systems: From Evanescent to Propagative Light. , 2017, , 613-654.		0
17	From Elasticity to Inelasticity in Cancer Cell Mechanics: A Loss of Scale Invariance. Biophysical Journal, 2017, 112, 122a.	0.2	0
18	High-resolution-scanning waveguide microscopy: spatial refractive index and topography quantification. Optics Letters, 2017, 42, 2523.	1.7	3

#	Article	IF	CITATIONS
19	Evidence of selection for an accessible nucleosomal array in human. BMC Genomics, 2016, 17, 526.	1.2	25
20	Comparative Multifractal Analysis of Dynamic Infrared Thermograms and X-Ray Mammograms Enlightens Changes in the Environment of Malignant Tumors. Frontiers in Physiology, 2016, 7, 336.	1.3	18
21	From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance. AIP Conference Proceedings, 2016, , .	0.3	8
22	Combining multifractal analyses of digital mammograms and infrared thermograms to assist in early breast cancer diagnosis. AIP Conference Proceedings, 2016, , .	0.3	11
23	Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations. Scientific Reports, 2016, 6, 22469.	1.6	9
24	Revealing stiffening and brittling of chronic myelogenous leukemia hematopoietic primary cells through their temporal response to shear stress. Physical Biology, 2016, 13, 03LT01.	0.8	13
25	Genome-wide alterations of the DNA replication program during tumor progression. AIP Conference Proceedings, 2016, , .	0.3	0
26	Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis. Applied Physics Letters, 2016, 108, .	1.5	20
27	Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope. Proceedings of SPIE, 2016, , .	0.8	1
28	Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. Applied Optics, 2016, 55, 1216.	2.1	28
29	Enlightening intracellular complexity of living cells with quantitative phase microscopy. , 2016, , .		3
30	Resonant Waveguide Imaging of Living Systems: From Evanescent to Propagative Light. , 2016, , 1-42.		0
31	Ubiquitous human â€~master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. Journal of Physics Condensed Matter, 2015, 27, 064102.	0.7	11
32	Structural organization of human replication timing domains. FEBS Letters, 2015, 589, 2944-2957.	1.3	28
33	Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves. Biophysical Journal, 2015, 108, 2235-2248.	0.2	32
34	Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach. Journal of Biomedical Optics, 2015, 20, 096005.	1.4	22
35	Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis. Frontiers in Physiology, 2014, 5, 176.	1.3	68
36	Diffraction phase microscopy: retrieving phase contours on living cells with a wavelet-based space-scale analysis. Journal of Biomedical Optics, 2014, 19, 036007.	1.4	25

#	Article	IF	CITATIONS
37	Plasmon-based tomographic microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 155.	0.8	8
38	From Rheology to Elasticity: How Can We Capture the Dynamical Properties of Cells?. Biophysical Journal, 2014, 106, 175a.	0.2	0
39	Large replication skew domains delimit GC-poor gene deserts in human. Computational Biology and Chemistry, 2014, 53, 153-165.	1.1	5
40	A Wavelet-Based Method for Multifractal Analysis of Medical Signals: Application to Dynamic Infrared Thermograms of Breast Cancer. Communications in Computer and Information Science, 2014, , 288-300.	0.4	5
41	Instrument Response Standard in Time-Resolved Fluorescence Spectroscopy at Visible Wavelength: Quenched Fluorescein Sodium. Applied Spectroscopy, 2014, 68, 577-583.	1.2	55
42	Multifractal analysis of skin temperature fluctuations of women breasts with and without tumor. , 2014, , .		0
43	Sensing Nanometer Depth of Focused Optical Fields with Scanning Surface Plasmon Microscopy. Plasmonics, 2013, 8, 715-722.	1.8	4
44	Multifractal analysis of dynamic infrared imaging of breast cancer. Europhysics Letters, 2013, 104, 68001.	0.7	34
45	Wavelet-based decomposition of high resolution surface plasmon microscopy V (Z) curves at visible and near infrared wavelengths. Optics Express, 2013, 21, 7456.	1.7	13
46	Guided wave microscopy: mastering the inverse problem. Optics Letters, 2013, 38, 4269.	1.7	9
47	Evolutionary comparisons reveal a positional switch for spindle pole oscillations in <i>Caenorhabditis</i> embryos. Journal of Cell Biology, 2013, 201, 653-662.	2.3	29
48	The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA. Nucleic Acids Research, 2012, 40, 2566-2576.	6.5	64
49	Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution. Comptes Rendus Physique, 2012, 13, 800-814.	0.3	10
50	Amplitude and phase images of cellular structures with a scanning surface plasmon microscope. Optics Express, 2011, 19, 6571.	1.7	33
51	Mechanics of the IL2RA Gene Activation Revealed by Modeling and Atomic Force Microscopy. PLoS ONE, 2011, 6, e18811.	1.1	7
52	<i>In vivo</i> analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant Journal, 2011, 67, 1116-1123.	2.8	186
53	Multi-scale coding of genomic information: From DNA sequence to genome structure and function. Physics Reports, 2011, 498, 45-188.	10.3	108
54	<i>In vivo</i> Study of the Histone Chaperone Activity of Nucleolin by FRAP. Biochemistry Research International, 2011, 2011, 1-15.	1.5	24

#	Article	IF	CITATIONS
55	High resolution surface plasmon imaging of nanoparticles. , 2010, , .		2
56	Scanning surface plasmon imaging of nanoparticles. Physical Review B, 2010, 81, .	1.1	17
57	High resolution surface plasmon microscopy for cell imaging. Proceedings of SPIE, 2010, , .	0.8	5
58	Optimization of branched resonant nanostructures illuminated by a strongly focused beam. Applied Physics Letters, 2010, 97, 243103.	1.5	3
59	Effect of Genomic Long-Range Correlations on DNA Persistence Length: From Theory to Single Molecule Experiments. Journal of Physical Chemistry B, 2010, 114, 5125-5143.	1.2	33
60	Modeling of the scanning surface plasmon microscope. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 450.	0.8	16
61	Nucleosome positioning by genomic excluding-energy barriers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22257-22262.	3.3	54
62	Advances in surface plasmon resonance-based high throughput biochips. Frontiers of Physics in China, 2009, 4, 469-480.	1.0	4
63	TRF2 promotes, remodels and protects telomeric Holliday junctions. EMBO Journal, 2009, 28, 641-651.	3.5	99
64	Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies. Surface Science, 2009, 603, 3307-3320.	0.8	36
65	Impedance spectroscopy of the potential response of MUO and AUT self-assembled monolayers on polycrystalline thin gold films. Journal of Electroanalytical Chemistry, 2009, 629, 138-146.	1.9	4
66	Towards A New Generation Of Single Molecule High Resolution Sensors. Biophysical Journal, 2009, 96, 29a.	0.2	0
67	High Resolution Surface Plasmon Microscopy: From Nano-colloids To Single Nucleosome Imaging. Biophysical Journal, 2009, 96, 60a.	0.2	0
68	Atomic Force Microscopy In Solution Shows Nucleosome Positioning By Excluding Genomic Energy Barriers. Biophysical Journal, 2009, 96, 419a.	0.2	0
69	High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions. Optics Letters, 2007, 32, 509.	1.7	45
70	Enzymatic activity of immobilized yeast phosphoglycerate kinase. Biosensors and Bioelectronics, 2007, 22, 2449-2455.	5.3	2
71	Gouy diffuse layer modelling in phosphate buffers. Journal of Electroanalytical Chemistry, 2007, 603, 107-112.	1.9	4
72	Surface plasmon resonance characterization of thermally evaporated thin gold films. Surface Science, 2007, 601, 5445-5458.	0.8	44

#	Article	IF	CITATIONS
73	Electrically induced microflows probed by Fluorescence Correlation Spectroscopy. European Physical Journal E, 2005, 16, 259-266.	0.7	4
74	Topography reconstruction from surface plasmon resonance data. Journal of Optics, 2005, 7, 472-478.	1.5	2
75	Low Frequency Rhythms in Human DNA Sequences: A Key to the Organization of Gene Location and Orientation?. Physical Review Letters, 2004, 93, 108101.	2.9	36
76	Probing the dynamics of a confined enzyme by surface plasmon resonance. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 402-409.	1.2	7
77	Ramified gold deposits at the gasâ^£liquid interface. Journal of Electroanalytical Chemistry, 2003, 544, 129-135.	1.9	4
78	Morphological Control of Gold Electrodeposits Grown at the Gas-Liquid Interface. Journal of the Electrochemical Society, 2003, 150, C175.	1.3	3
79	In Situ CRM Study of the Self-Oscillating Cu-(II)-Lactate and Cu-(II)-Tartrate Systems. Journal of the Electrochemical Society, 2003, 150, C472.	1.3	9
80	Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. Physical Review E, 2002, 65, 061409.	0.8	94
81	Spontaneous Oscillations During The Electrodeposition of Gold Thin Films. Materials Research Society Symposia Proceedings, 2002, 749, 1.	0.1	Ο
82	Electroless formation of gold deposits under positively charged surfactant monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 401-407.	2.3	5
83	Control of the morphology of gold deposits grown at the gas/liquid interface. Materials Science and Engineering C, 2002, 22, 209-212.	3.8	Ο
84	Spontaneous oscillations in gold electrodeposition. Electrochemistry Communications, 2002, 4, 629-632.	2.3	13
85	Electrically induced flows in the vicinity of a dielectric stripe on a conducting plane. European Physical Journal E, 2002, 9, 387-399.	0.7	52
86	Probing the confined dynamics of a spherical colloid close to a surface by combined optical trapping and reflection interference contrast microscopy. Applied Physics Letters, 2001, 79, 3887-3889.	1.5	6
87	Analysis of diffuse-layer effects on time-dependent interfacial kinetics. Journal of Electroanalytical Chemistry, 2001, 500, 52-61.	1.9	114
88	Mixed Polypyrrole Surfactant Films Obtained by Electrophoretic Engulfing of Multilamellar Vesicles. Journal of the Electrochemical Society, 2001, 148, C301.	1.3	5
89	Electroless Deposition of Gold Films under Organized Monolayers. Journal of the Electrochemical Society, 2001, 148, C65.	1.3	9
90	Probing interfacial dynamics by phase-shift interferometry in thin cell electrodeposition. Journal of Electroanalytical Chemistry, 2000, 486, 204-219.	1.9	18

#	Article	IF	CITATIONS
91	Internal structure of dense electrodeposits. Physical Review E, 2000, 61, 5452-5463.	0.8	34
92	Dense Branching Morphology in Electrodeposition Experiments: Characterization and Mean-Field Modeling. Physical Review Letters, 2000, 84, 3129-3132.	2.9	26
93	Electrochemical Codeposition of Multilamellar Vesicles in an Inorganic Matrix. Journal of the Electrochemical Society, 2000, 147, 575.	1.3	5
94	Dissolution Rates of Pure Nonionic Surfactants. Langmuir, 2000, 16, 5276-5283.	1.6	31
95	Electrodeposition of two-dimensional silver films under dihexadecyl phosphate monolayers. Materials Science and Engineering C, 1999, 8-9, 437-444.	3.8	12
96	Growth patterns in electrodeposition. Physica A: Statistical Mechanics and Its Applications, 1999, 263, 305-314.	1.2	30
97	Front Dynamics during Diffusion-Limited Corrosion of Ramified Electrodeposits. Journal of Physical Chemistry B, 1999, 103, 5841-5851.	1.2	44
98	In Situ Atomic Force Microscopy Imaging of Electrodeposition of Mixed Layers of Copper/Cuprous Oxide. Journal of the Electrochemical Society, 1999, 146, 4101-4104.	1.3	11
99	Diffusion-Limited Dynamics in Growth Experiments. Solid Mechanics and Its Applications, 1999, , 93-101.	0.1	0
100	AC field induced two-dimensional aggregation of multilamellar vesicles. European Physical Journal B, 1998, 5, 87-97.	0.6	13
101	In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy. Journal of Electroanalytical Chemistry, 1998, 446, 189-203.	1.9	64
102	Analyzing Chaotic Behavior in a Belousovâ^'Zhabotinskyi Reaction by Using a Global Vector Field Reconstruction. Journal of Physical Chemistry A, 1998, 102, 10265-10273.	1.1	21
103	Linear Stability Analysis of Unsteady Galvanostatic Electrodeposition in the Twoâ€Dimensional Diffusionâ€Limited Regime. Journal of the Electrochemical Society, 1998, 145, 2016-2024.	1.3	66
104	Dynamical characterization of one-dimensional stationary growth regimes in diffusion-limited electrodeposition processes. Physical Review E, 1998, 58, 7700-7709.	0.8	44
105	Experimental Demonstration of Diffusion-Limited Dynamics in Electrodeposition. Physical Review Letters, 1997, 78, 5010-5013.	2.9	47
106	Dynamical Characterization of Electroless Deposition in the Diffusion-Limited Regime. Fractals, 1997, 05, 75-86.	1.8	9
107	Reconstruction of a set of differential equations modelling an experimental homoclinic chaos in the Belousov-Zhabotinskii reaction. , 1997, , .		0
108	Convection Induced Self-Organization in Electroless Deposition Experiments. Journal De Physique II, 1997, 7, 663-675.	0.9	3

#	Article	IF	CITATIONS
109	Interferometric characterization of growth dynamics during dendritic electrodeposition of zinc. Physical Review E, 1996, 53, 1777-1788.	0.8	37
110	The influence of transport and reaction processes on the morphology of a metal electrodeposit in thin gap geometry. Physica A: Statistical Mechanics and Its Applications, 1995, 213, 209-231.	1.2	24
111	Diffusion-limited kinetics in thin-gap electroless deposition. Journal of Electroanalytical Chemistry, 1995, 397, 93-104.	1.9	30
112	Role of convection in thin-layer electrodeposition. Physical Review E, 1995, 51, 3444-3458.	0.8	146
113	Uncovering a multiplicative process in one-dimensional cuts of diffusion-limited aggregates. Journal of Difference Equations and Applications, 1995, 1, 117-124.	0.7	5
114	Type-II Intermittency in the Presence of Additive and Multiplicative Noise. , 1995, , 99-113.		1
115	BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGGREGATES. , 1994, , 326-346.		3
116	Spatiotemporal morphological transitions in thin-layer electrodeposition: The Hecker effect. Physical Review E, 1994, 49, 4298-4305.	0.8	60
117	Structural Analysis of Electroless Deposits in the Diffusion-Limited Regime. Physical Review Letters, 1994, 73, 2998-3001.	2.9	54
118	Revisited experimental analysis of morphological changes in thin-layer electrodeposition. Journal of Electroanalytical Chemistry, 1994, 371, 93-100.	1.9	39
119	Determination of Ionic Mobilities by Thin-Layer Electrodeposition. Journal of Chemical Education, 1994, 71, A273.	1.1	3
120	Wavelet Based Structural Analysis of Electroless Deposits in the Diffusion Limited Regime. Materials Research Society Symposia Proceedings, 1994, 367, 43.	0.1	0
121	INFLUENCE OF CHEMICAL PERTURBATIONS ON THE SURFACE ROUGHNESS OF THIN LAYER ELECTRODEPOSITS. , 1994, , 159-167.		0
122	Experimental evidence for homoclinic chaos in an electrochemical growth process. Physica D: Nonlinear Phenomena, 1993, 62, 170-185.	1.3	43
123	Experimental demonstration of the origin of interfacial rhythmicity in electrodeposition of zinc dendrites. Journal of Electroanalytical Chemistry, 1993, 359, 81-96.	1.9	36
124	Homoclinic chaos in chemical systems. Physica D: Nonlinear Phenomena, 1993, 62, 134-169.	1.3	60
125	BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGCREGATES. Fractals, 1993, 01, 629-649.	1.8	48
126	INFLUENCE OF CHEMICAL PERTURBATIONS ON THE SURFACE ROUGHNESS OF THIN LAYER ELECTRODEPOSITS. Fractals, 1993, 01, 451-459.	1.8	25

#	Article	IF	CITATIONS
127	Statistical mechanics of Laplacian fractals. Physical Review Letters, 1993, 71, 2425-2428.	2.9	8
128	Fibonacci Sequences in Diffusion-Limited Aggregation. NATO ASI Series Series B: Physics, 1993, , 191-202.	0.2	2
129	Optical-diffraction measurement of fractal dimensions $andf(\hat{l}\pm)$ spectrum. Physical Review A, 1992, 45, 8961-8964.	1.0	6
130	Golden mean arithmetic in the fractal branching of diffusion-limited aggregates. Physical Review Letters, 1992, 68, 3456-3459.	2.9	66
131	Structural five-fold symmetry in the fractal morphology of diffusion-limited aggregates. Physica A: Statistical Mechanics and Its Applications, 1992, 188, 217-242.	1.2	28
132	Uncovering Fibonacci sequences in the fractal morphology of diffusion-limited aggregates. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 171, 31-36.	0.9	28
133	Optical wavelet transform and local scaling properties of fractals. Journal of Applied Crystallography, 1991, 24, 526-530.	1.9	6
134	Anisotropic Laplacian growths: From diffusion-limited aggregates to dendritic fractals. Physical Review Letters, 1991, 66, 2332-2335.	2.9	42
135	Diffusion Controlled Growth Phenomena: From Smooth Interfaces to Fractal Structures. NATO ASI Series Series B: Physics, 1991, , 297-315.	0.2	2
136	SYMBOLIC DYNAMICS IN THE BELOUSOV–ZHABOTINSKII REACTION: FROM RÖSSLER'S INTUITION TO EXPERIMENTAL EVIDENCE FOR SHIL'NIKOV'S HOMOCLINIC CHAOS. , 1991, , 79-118.		3
137	Experimental Evidence for Spatio-Temporal Chaos in Diffusion-Limited Growth Phenomena. NATO ASI Series Series B: Physics, 1991, , 329-343.	0.2	Ο
138	Wavelet analysis of the self-similarity of diffusion-limited aggregates and electrodeposition clusters. Physical Review A, 1990, 41, 5537-5560.	1.0	74
139	Transformation en ondelettes et renormalisation. Lecture Notes in Mathematics, 1990, , 125-191.	0.1	8
140	Statistical properties of fractal dendrites and anisotropic diffusion-limited aggregates. Physical Review A, 1990, 42, 3499-3503.	1.0	71
141	Optical wavelet transform of fractal aggregates. Physical Review Letters, 1990, 64, 745-748.	2.9	85
142	Analyse en ondelettes de croissances fractales electrochimiques. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1990, 87, 1487-1545.	0.2	2
143	Experimental evidence for deterministic chaos in electrochemical deposition. Journal De Physique, 1990, 51, 2477-2487.	1.8	20
144	Argoulet al.reply. Physical Review Letters, 1989, 63, 1323-1323.	2.9	8

#	Article	IF	CITATIONS
145	Wavelet transform of fractal aggregates. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 135, 327-336.	0.9	91
146	Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade. Nature, 1989, 338, 51-53.	13.7	208
147	Characterizing Spatio-Temporal Chaos in Electrodeposition Experiments. NATO ASI Series Series B: Physics, 1989, , 433-443.	0.2	2
148	Fractal Dimensions andf(α) Spectrum for Strange Attractors. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1988, 68, 519-522.	0.9	8
149	Self-Similarity of Diffusion-Limited Aggregates and Electrodeposition Clusters. Physical Review Letters, 1988, 61, 2558-2561.	2.9	171
150	A three-dimensional dissipative map modeling type-II intermittency. Journal De Physique, 1988, 49, 767-775.	1.8	14
151	Transitions to Chaos in the Presence of an External Periodic Field: Cross-Over Effect in the Measure of Critical Exponents. Europhysics Letters, 1987, 3, 643-651.	0.7	9
152	From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. I. Experiment. Journal of Chemical Physics, 1987, 86, 3325-3338.	1.2	124
153	From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. II. Modeling and theory. Journal of Chemical Physics, 1987, 86, 3339-3356.	1.2	88
154	Chemical chaos: from hints to confirmation. Accounts of Chemical Research, 1987, 20, 436-442.	7.6	91
155	Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 120, 269-275.	0.9	89
156	Lyapunov exponents and phase transitions in dynamical systems. Lecture Notes in Mathematics, 1986, , 338-360.	0.1	7
157	Type-II intermittency in a peroidically driven nonlinear oscillator. Physical Review A, 1986, 34, 726-729.	1.0	52
158	Quasiperiodicity in chemistry: An experimental path in the neighbourhood of a codimension-two bifurcation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 108, 426-430.	0.9	20
159	Scaling for a periodic forcing at the onset of intermittency. Journal De Physique (Paris), Lettres, 1985, 46, 901-907.	2.8	7
160	Experimental Study of Target Patterns Exhibited by the B.Z. Reaction. Springer Series in Synergetics, 1984, , 102-106.	0.2	3
161	Nonlinear Interactions Between Instabilities Leading to Chaos in the Belousov-Zhabotinsky Reaction. Springer Series in Synergetics, 1984, , 146-148.	0.2	0
162	Mechanical Sensing of Living Systems — From Statics to Dynamics. , 0, , .		0