Kyung-Han Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/19915/publications.pdf

Version: 2024-02-01

126907 110387 4,285 160 33 citations h-index papers

160 160 160 3221 docs citations citing authors all docs times ranked

64

g-index

#	Article	IF	CITATIONS
1	Terahertz-driven linear electron acceleration. Nature Communications, 2015, 6, 8486.	12.8	461
2	High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nature Photonics, 2011, 5, 475-479.	31.4	308
3	Stable generation of GeV-class electron beams from self-guided laser–plasma channels. Nature Photonics, 2008, 2, 571-577.	31.4	291
4	High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters, 2013, 38, 796.	3.3	245
5	Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser and Photonics Reviews, 2015, 9, 129-171.	8.7	179
6	High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nature Communications, 2017, 8, 141.	12.8	125
7	Multi-mJ, kHz, 21  μm optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation. Optics Letters, 2014, 39, 3145.	3.3	122
8	Coherent Control of High-Order Harmonics with Chirped Femtosecond Laser Pulses. Physical Review Letters, 2001, 87, 243902.	7.8	111
9	Compact x-ray source based on burst-mode inverse Compton scattering at 100ÂkHz. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	103
10	Generation of Nonadiabatic Blueshift of High Harmonics in an Intense Femtosecond Laser Field. Physical Review Letters, 1999, 83, 2544-2547.	7.8	101
11	Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nature Photonics, 2017, 11, 222-226.	31.4	97
12	Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Optics Letters, 2009, 34, 1639.	3.3	96
13	Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics. Optics Letters, 2015, 40, 1069.	3.3	90
14	Generation and measurement of >108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser. Applied Physics B: Lasers and Optics, 2005, 81, 447-457.	2.2	81
15	Terahertz-driven, all-optical electron gun. Optica, 2016, 3, 1209.	9.3	78
16	High-energy, phase-stable, ultrabroadband kHz OPCPA at $21\hat{l}$ 4m pumped by a picosecond cryogenic Yb:YAG laser. Optics Express, 2011, 19, 15538.	3.4	76
17	High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier. Optics Letters, 2010, 35, 1752.	3.3	75
18	Continuously tunable high-order harmonics from atoms in an intense femtosecond laser field. Physical Review A, 2003, 67, .	2.5	65

#	Article	IF	Citations
19	Generation of 287 W, 55 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. Optics Letters, 2008, 33, 2473.	3.3	60
20	Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate. Journal of Modern Optics, 2015, 62, 1486-1493.	1.3	60
21	Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers. Optics Letters, 2015, 40, 2610.	3.3	57
22	Optimization of high-order harmonic brightness in the space and time domains. Physical Review A, 2004, 69, .	2.5	56
23	Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 <i>1¼</i> m OPCPA source. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 155601.	1.5	54
24	Efficient generation of ultra-intense few-cycle radially polarized laser pulses. Optics Letters, 2014, 39, 2487.	3.3	49
25	Adaptive quantum control of DCM fluorescence in the liquid phase. Journal of Chemical Physics, 2002, 117, 9858-9861.	3.0	44
26	Demonstration of a saturated Ni-like Ag x-ray laser pumped by a single profiled laser pulse from a 10-Hz Ti:sapphire laser system. Physical Review A, 2008, 77, .	2.5	44
27	Novel method for carrier-envelope-phase stabilization of femtosecond laser pulses. Optics Express, 2005, 13, 2969.	3.4	42
28	Scaling of high-order harmonic efficiencies with visible wavelength drivers: A route to efficient extreme ultraviolet sources. Applied Physics Letters, 2010, 97, 061107.	3.3	42
29	Nonadiabatic blueshift of high-order harmonics from Ar and Ne atoms in an intense femtosecond laser field. Physical Review A, 2001, 63, .	2.5	41
30	Mid-infrared laser filaments in air at a kilohertz repetition rate. Optica, 2016, 3, 678.	9.3	41
31	Toward a terahertz-driven electron gun. Scientific Reports, 2015, 5, 14899.	3.3	40
32	Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159.	3.3	39
33	Emission of a hot electron jet from intense femtosecond-laser–cluster interactions. Physical Review E, 2002, 66, 025402.	2.1	37
34	Femtosecond 85  î¼m source based on intrapulse difference-frequency generation of 21  î⅓ Letters, 2018, 43, 1335.	n pylses. (Optics
35	Generation of bright low-divergence high-order harmonics in a long gas jet. Applied Physics Letters, 2002, 81, 3726-3728.	3.3	34
36	Dependence of the electron beam parameters on the stability of laser propagation in a laser wakefield accelerator. Applied Physics Letters, 2007, 90, 151501.	3.3	32

#	Article	IF	CITATIONS
37	130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier. Optics Express, 2009, 17, 16911.	3.4	31
38	Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses. Physical Review Letters, 2015, 115, 043901.	7.8	31
39	High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier. Optics Express, 2015, 23, 10132.	3.4	31
40	Enhancement of soft x-ray emission from a cryogenically cooled Ar gas jet irradiated by 25 fs laser pulse. Applied Physics Letters, 2000, 76, 1819-1821.	3.3	30
41	Wavelength Scaling of High Harmonic Generation Close to the Multiphoton Ionization Regime. Physical Review Letters, 2013, 111, 073901.	7.8	29
42	Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier. Optica, 2016, 3, 816.	9.3	29
43	Optical waveform synthesizer and its application to high-harmonic generation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 074009.	1.5	25
44	Multi-mJ, kHz, ps deep-ultraviolet source. Optics Letters, 2015, 40, 665.	3.3	25
45	Enhanced high-harmonic generation up to the soft X-ray region driven by mid-infrared pulses mixed with their third harmonic. Optics Express, 2018, 26, 16955.	3.4	24
46	Measurement of energetic electrons from atomic clusters irradiated by intense femtosecond laser pulses. Physics of Plasmas, 2002, 9, 3595-3599.	1.9	22
47	Precise and long-term stabilization of the carrier-envelope phase of femtosecond laser pulses using an enhanced direct locking technique. Optics Express, 2007, 15, 8203.	3.4	22
48	Time–frequency analysis of chirped femtosecond pulses using Wigner distribution function. Applied Physics B: Lasers and Optics, 2002, 74, s231-s236.	2.2	21
49	Simultaneous Proton and X-ray Imaging with Femtosecond Intense Laser Driven Plasma Source. Japanese Journal of Applied Physics, 2007, 46, 5853.	1.5	21
50	Efficient high-order harmonic generation in a two-color laser field. Applied Physics B: Lasers and Optics, 2004, 78, 859-861.	2.2	20
51	Scaling of high harmonic generation conversion efficiency. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 045601.	1.5	20
52	100-kHz high-power femtosecond Ti:sapphire laser based on downchirped regenerative amplification. Optics Express, 2006, 14, 970.	3.4	18
53	Octave-spanning mid-infrared femtosecond OPA in a ZnGeP ₂ pumped by a 2.4â€Î⅓m Cr:ZnSe chirped-pulse amplifier. Optics Express, 2020, 28, 32403.	3.4	18
54	Temporal characterization of chirped femtosecond laser pulses. Optics Communications, 2002, 213, 193-200.	2.1	17

#	Article	IF	CITATIONS
55	High-order harmonic generation in Xe, Kr, and Ar driven by a 2.1- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ν</mml:mi></mml:math> m source: High-order harmonic spectroscopy under macroscopic effects. Physical Review A, 2012, 86, .	2.5	17
56	Indistinguishable single-mode photons from spectrally engineered biphotons. Optics Express, 2019, 27, 11626.	3.4	16
57	Stabilization and control of the carrier-envelope phase of high-power femtosecond laser pulses using the direct locking technique. Optics Express, 2007, 15, 104.	3.4	15
58	Electric-field reconstruction of femtosecond laser pulses from interferometric autocorrelation using an evolutionary algorithm. Optics Communications, 2007, 271, 169-177.	2.1	15
59	Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 205601.	1.5	14
60	Soft-x-ray emission from small-sized Ne clusters heated by intense, femtosecond laser pulses. Physical Review E, 2000, 62, 4461-4464.	2.1	13
61	Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry. Review of Scientific Instruments, 2004, 75, 2266-2270.	1.3	13
62	Multi-mJ mid-infrared kHz OPCPA and Yb-doped pump lasers for tabletop coherent soft x-ray generation. Journal of Optics (United Kingdom), 2015, 17, 094009.	2.2	13
63	Long-wavelength-infrared laser filamentation in solids in the near-single-cycle regime. Optics Letters, 2020, 45, 2175.	3.3	13
64	Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses. Scientific Reports, 2016, 6, 38165.	3.3	12
65	13-fs, 1-MW Ti:Sapphire Laser Oscillator in a Long-Cavity Configuration. Japanese Journal of Applied Physics, 2002, 41, L931-L934.	1.5	11
66	Chirp analysis of high-order harmonics from atoms driven by intense femtosecond laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 1141-1152.	1.5	11
67	Carrier-envelope phase stabilization of high-contrast femtosecond laser pulses with a relativistic intensity. Applied Physics Letters, 2006, 89, 031113.	3.3	11
68	Interplay of mulitphoton and tunneling ionization in short-wavelength-driven high-order harmonic generation. Physical Review A, 2011, 84, .	2.5	11
69	Wavelength scaling of optimal hollow-core fiber compressors in the single-cycle limit. Optics Express, 2012, 20, 9099.	3.4	11
70	Optimal generation of high harmonics in the water-window region by synthesizing 800-nm and mid-infrared laser pulses. Optics Letters, 2015, 40, 3754.	3.3	11
71	Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification. Optics Letters, 2010, 35, 1929.	3.3	10
72	Recombination-amplitude calculations of noble gases, in both length and acceleration forms, beyond the strong-field approximation. Physical Review A, 2013, 88, .	2.5	10

#	Article	IF	CITATIONS
73	Characteristics of a Ni-like silver x-ray laser pumped by a single profiled laser pulse. Journal of the Optical Society of America B: Optical Physics, 2008, 25, B76.	2.1	9
74	Performance scaling of high-power picosecond cryogenically cooled rod-type Yb:YAG multipass amplification. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2798.	2.1	9
75	Low-cost cavity-dumped femtosecond Cr:LiSAF laser producing >100 nJ pulses. Optics Letters, 2010, 35, 607.	3.3	8
76	Demonstration of a cavity-enhanced optical parametric chirped-pulse amplification system. Optics Letters, 2011, 36, 1206.	3.3	8
77	Inhibition of multi-filamentation of high-power laser beams. Optics Letters, 2016, 41, 4064.	3.3	8
78	Incorporation of a cavity-dumped oscillator in a long-wavelength injected femtosecond terawatt Ti:sapphire laser. Optics Communications, 2000, 185, 413-418.	2.1	6
79	Adaptive Pulse Compression of Femtosecond Laser Pulses Using a Low-Loss Pulse Shaper. Japanese Journal of Applied Physics, 2004, 43, 5289-5293.	1.5	6
80	Dispersion and birefringence of irregularly microstructured fiber with an elliptic core. Applied Optics, 2007, 46, 8493.	2.1	6
81	Measurement of the Electron Density Produced by the Prepulse in an Experiment of High Energy Proton Beam Generation. Journal of the Korean Physical Society, 2007, 50, 34-39.	0.7	5
82	Fiber-amplifier-pumped, 1-MHz, 1-ÂμJ, 21-Âμm, femtosecond OPA with chirped-pulse DFG front-end. Optics Express, 2019, 27, 9144.	3.4	5
83	Demonstration of femtosecond laser micromachining for figure correction of thin silicon optics for x-ray telescopes., 2019,,.		5
84	High-power Femtosecond Ti:sapphire Laser at 1 KHz with a Long-cavity Femtosecond Oscillator. Journal of the Optical Society of Korea, 2003, 7, 135-138.	0.6	4
85	Macroscopic scaling of high-order harmonics generated by two-color optimized waveforms in a hollow waveguide. Physical Review A, 2017, 96, .	2.5	4
86	Laser-driven proton sources and their applications: femtosecond intense laser plasma driven simultaneous proton and x-ray imaging. Journal of Physics: Conference Series, 2008, 112, 042036.	0.4	3
87	Bandwidth extension and conversion efficiency improvements beyond phase matching limitations using cavity-enhanced OPCPA. Optics Express, 2021, 29, 9907.	3.4	3
88	Investigation of soft X-ray emission from Ar clusters heated by ultrashort laser pulses. Laser and Particle Beams, 2002, 20, 51-57.	1.0	2
89	Development of a 100-kHz femtosecond high-power laser using down-chirped regenerative amplification. Laser Physics, 2006, 16, 673-677.	1.2	2
90	Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser. , 2015, , .		2

#	Article	IF	CITATIONS
91	Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier: publisher's note. Optica, 2016, 3, 853.	9.3	2
92	Multi-octave-spanning supercontinuum generation through high-energy laser filaments in YAG and ZnSe pumped by a 2.4 $\hat{l}\frac{1}{4}$ m femtosecond Cr:ZnSe laser. High Power Laser Science and Engineering, 2021, 9, .	4.6	2
93	Downchirped Regenerative Amplification of Femtosecond Laser Pulses at 100 kHz Repetition Rate. Springer Series in Optical Sciences, 2007, , 493-501.	0.7	2
94	Coherent control of high-order harmonics generated with intense femtosecond laser pulses. European Physical Journal D, 2003, 26, 43-46.	1.3	1
95	Observation of enhanced soft x-ray emission using nitrogen clusters ionized by intense, femtosecond laser. Journal of Applied Physics, 2003, 93, 3105-3107.	2.5	1
96	Optical damage evaluation of a CPA Ti:sapphire laser for the safe design of a PW system., 2007,,.		1
97	Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier. EPJ Web of Conferences, 2013, 41, 01002.	0.3	1
98	Multi-mJ, kHz intense picosecond deep ultraviolet source based on a frequency-quadrupled cryogenic Yb:YAG laser. , 2014, , .		1
99	Scaling of high harmonic generation efficiencies with 400-nm and 800-nm driver pulses. , 2010, , .		1
100	Octave-spanning 1.5-optical-cycle 6.5-Âμm OPA pumped by 2.1-Âμm OPCPA. , 2016, , .		1
101	Water-window soft X-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 ${\rm \hat{A}\mu m}$ OPCPA source. , 2016, , .		1
102	Terahertz-driven, sub-keV electron gun. , 2016, , .		1
103	Highly-stable, 1 kHz, 200 mJ, 1.1 ps laser optically synchronized to a photocathode laser for inverse Compton scattering., 2018 , , .		1
104	Resonant Radiation of Mid-infrared Laser Filaments Driven by a 2.4 $\hat{A}\mu m$ Femtosecond Cr: ZnSe Laser. , 2019, , .		1
105	High-harmonic generation in an intense femtosecond laser field. , 2000, 3886, 501.		0
106	<title>Efficient high-order harmonic generation using a long gas jet</title> ., 2001, , .		0
107	<title>Soft x-ray emission from Ar clusters heated by ultrashort laser pulse</title> ., 2001, , .		0
108	Measurement of the group-delay dispersion of optical elements using white-light interferometry. , 0, , .		0

#	Article	IF	CITATIONS
109	Adaptive pulse compression of femtosecond laser pulses using a low-loss pulse shaper. , 0, , .		O
110	Accurate Contrast-ratio Characterization of Femtosecond and Chirped Picosecond Pulses Using the Decorrelation of Third-order Correlation Trace., 2007,,.		0
111	Full characterization of a GRIP Ni-like Ag amplifier for seeding with high harmonics at 13.9 nm., 2007, , .		0
112	Accurate contrast-ratio characterization of femtosecond and chirped picosecond pulses using the decorrelation of third-order correlation trace. , 2007, , .		0
113	Recent advances in Cr: Colquiriite laser technology. , 2009, , .		0
114	Generation of Sub-150-fs, 100 nJ Pulses from a Low-cost Cavity-dumped Cr:LiSAF Laser. , 2010, , .		0
115	Ultrabroadband Optical Parametric Chirped Pulse Amplifier System for Single-Cycle Waveform Synthesis., 2010,,.		0
116	Scalable High-Energy Sub-Cycle Waveform Synthesis. , 2010, , .		0
117	High-energy, picosecond, cryogenic Yb:YAG chirped-pulse amplifier at kHz repetition rates for OPCPA pumping. , 2010, , .		0
118	Influence of Nonadiabatic Tunneling Ionization on Short-Wavelength-Driven High Harmonic Generation. , $2011, , .$		0
119	Scalable High-Energy Sub-Cycle Waveform Synthesis for High-Field Physics. , 2011, , .		0
120	Demonstration of phase matching bandwidth extension in cavity-enhanced optical parametric chirped pulse amplification. , 2011 , , .		0
121	High-harmonic generation using a kHz, 2.1-µm OPCPA pumped by a ps cryogenic Yb:YAG amplifier., 2012,,.		0
122	Dispersion-Induced Depletion Instabilities in Cavity-Enhanced Optical Parametric Chirped Pulse Amplification. , 2012, , .		0
123	High energy and power cryogenic composite-thin-disk Yb:YAG laser. , 2013, , .		0
124	Demonstration of Bandwidth and Conversion Efficiency Improvements beyond Phase-Matching Limitations in Cavity-Enhanced Optical Parametric Chirped Pulse Amplification. , 2013, , .		0
125	Multi-mJ, kHz, 2.1 - \hat{l} 4m OPCPA for high-flux soft X-ray high-harmonic radiation. , $2014, , .$		0
126	Electron acceleration in a single-cycle terahertz field. , 2014, , .		0

#	Article	lF	CITATIONS
127	Mid-IR Filamentation in Dielectrics: 3-octave-spanning Supercontinuum Generation and Sub-2-cycle Self-compression., 2015,,.		0
128	Multi-mJ, kHz, intense picosecond deep-ultraviolet source. , 2015, , .		0
129	Demonstration of an ultracompact THz-driven electron gun. , 2016, , .		0
130	High-energy mid-infrared sub-cycle pulse synthesis. , 2017, , .		0
131	Extreme nonlinear optics using strong mid-infrared laser pulses. , 2017, , .		0
132	Linear-Field Particle Acceleration in Free Space by Spatiotemporally Structured Laser Pulses. , 2018, , .		0
133	Tunable coherent femtosecond X-ray source driven by an intense femtosecond laser. European Physical Journal Special Topics, 2001, 11, Pr2-345-Pr2-350.	0.2	0
134	Interaction of intense, femtosecond laser pulse with small-sized Ne clusters. European Physical Journal Special Topics, 2001, 11, Pr2-433-Pr2-436.	0.2	0
135	Direct Locking of the Carrier-Envelope Phase of Femtosecond Laser Pulses. Springer Series in Optical Sciences, 2004, , 171-177.	0.7	0
136	Laser Driven Particle Accelerators and their Application to Science, Industry and Medicine. The Review of Laser Engineering, 2008, 36, 1123-1124.	0.0	0
137	2-micron optical parametric chirped pulse amplifier for long-wavelength driven high harmonic generation. , 2008, , .		0
138	High-Power, Few-Cycle, Phase-Stabilized 2.2-µm Optical Parametric Chirped Pulse Amplifier., 2009,,.		0
139	Strong Bandwidth and Efficiency Improvement by Passive Pulse Shaping in Cavity-Enhanced OPCPA. , 2009, , .		0
140	High-average-power cryogenically-cooled picosecond Yb:YAG amplifier seeded by a fiber CPA system. , 2009, , .		0
141	Generation of 2-kHz, 40-mJ Picosecond Pulses from a Cryogenic Yb:YAG Chirped-Pulse Amplifier for OPCPA Pumping. , 2010, , .		0
142	Demonstration of Cavity-Enhanced Optical Parametric Chirped-Pulse Amplification System at High Repetition Rate. , 2010, , .		0
143	High-energy, Few-cycle, kHz OPCPA at 2.1 \hat{l} 4m Pumped by a Picosecond Cryogenic Yb:YAG Laser. , 2011, , .		0
144	CEP-Stable, Few-Cycle, kHz OPCPAs for Attosecond Science: Energy Scaling and Coherent Sub-Cycle Pulse Synthesis. Springer Proceedings in Physics, 2012, , 33-40.	0.2	0

#	Article	IF	CITATIONS
145	Wavelength scaling of hollow-core fiber compressor design parameters. , 2012, , .		O
146	Scaling of High Harmonic Generation with Visible Driver Wavelengths. , 2012, , .		0
147	Overcoming Intra-Cavity Nonlinear Phase Limitations in Cavity-Enhanced Optical Parametric Chirped Pulse Amplification through Cavity-Locking. , 2013, , .		O
148	Wavelength scaling of high-harmonic generation efficiency close to the multiphoton ionization regime. , 2013, , .		0
149	Highly efficient THz pulse generation from optical rectification in cryogenically cooled lithium niobate. , 2013, , .		О
150	Versatile simulation package for ultrafast pulse propagation and high harmonic generation., 2015,,.		0
151	Mid-IR laser filamentation in air at a kHz repetition rate. , 2016, , .		0
152	Multi-filament Inhibition and Resulting Solitary Wave Formation in Condensed Matter. , 2016, , .		0
153	Mid-infrared sub-single-cycle pulse synthesis from a parametric amplifier covering the wavelength of 2.5–9.0 μm. , 2016, , .		O
154	Octave-spanning 6-µm OPA pumped by 2.1-µm OPCPA. , 2016, , .		0
155	Monoenergetic Relativistic Electron Pulses by Laser-Driven Linear Acceleration in Free Space. , 2016, , .		O
156	Sub-keV Electron Gun Driven by Ultrafast THz Pulses. , 2016, , .		0
157	High-harmonic generation in solids using a mid-infrared sub-cycle pulse synthesizer. , 2017, , .		О
158	Compact 1-MHz, 1-ÂμJ, Few-cycle, Passively CEP-stable 2-Âμm Source. , 2019, , .		0
159	Supercontinuum generation in dispersion-engineered PECVD SiN waveguides for a Yb-fiber laser frequency comb., 2020,,.		0
160	Highly efficient, octave-spanning mid-infrared OPA in ZnGeP2 pumped by a femtosecond Cr:ZnSe laser. , 2020, , .		0