Ã,ngela Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1990991/publications.pdf

Version: 2024-02-01

394421 501196 1,170 89 19 28 citations g-index h-index papers 90 90 90 765 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Future perspectives of biological macromolecules in biomedicine. , 2022, , 607-632.		o
2	Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. International Journal of Molecular Sciences, 2022, 23, 1165 .	4.1	10
3	Peptides vs. Polymers: Searching for the Most Efficient Delivery System for Mitochondrial Gene Therapy. Pharmaceutics, 2022, 14, 757.	4.5	6
4	Modulation of Chitosan-TPP Nanoparticle Properties for Plasmid DNA Vaccines Delivery. Polymers, 2022, 14, 1443.	4.5	9
5	Vaccines against Infectious Diseases and Cancer. Vaccines, 2022, 10, 648.	4.4	0
6	Maximization of the Minicircle DNA Vaccine Production Expressing SARS-CoV-2 RBD. Biomedicines, 2022, 10, 990.	3.2	2
7	Flavonoids-Based Delivery Systems towards Cancer Therapies. Bioengineering, 2022, 9, 197.	3.5	19
8	New Combined Approach to Simplify the Minicircular DNA Lysate and Directly Apply in Ion Exchange Membrane Chromatography. , 2022, 8, .		0
9	Follicular Fluid: A Powerful Tool for the Understanding and Diagnosis of Polycystic Ovary Syndrome. Biomedicines, 2022, 10, 1254.	3.2	18
10	Dopamine-Coated Silver Nanoparticles: Therapeutic Agents to Fight Bacteria and Fungi. , 2022, 8, .		0
11	Advances in Membrane-Bound Catechol-O-Methyltransferase Stability Achieved Using a New Ionic Liquid-Based Storage Formulation. International Journal of Molecular Sciences, 2022, 23, 7264.	4.1	6
12	Taxifolin and Lucidin as Potential E6 Protein Inhibitors: p53 Function Re-Establishment and Apoptosis Induction in Cervical Cancer Cells. Cancers, 2022, 14, 2834.	3.7	7
13	The Performance of Minicircle DNA Versus Parental Plasmid in <i>p53</i> Gene Delivery Into HPV-18-Infected Cervical Cancer Cells. Nucleic Acid Therapeutics, 2021, 31, 82-91.	3.6	11
14	Boxâ€Behnken Design a Key Tool to Achieve Optimized PCL/Gelatin Electrospun Mesh. Macromolecular Materials and Engineering, 2021, 306, 2000678.	3.6	12
15	Applications of gellan natural polymer microspheres in recombinant catechol-O-methyltransferase direct capture from a Komagataella pastoris lysate. International Journal of Biological Macromolecules, 2021, 172, 186-196.	7.5	2
16	Effect of Plasmid DNA Size on Chitosan or Polyethyleneimine Polyplexes Formulation. Polymers, 2021, 13, 793.	4.5	16
17	Editorial: Epigenetic Therapy With Histone Deacetylase Inhibitors: Implications for Cancer Treatment. Frontiers in Cell and Developmental Biology, 2021, 9, 662761.	3.7	0
18	Synthesis and Characterization of Mannosylated Formulations to Deliver a Minicircle DNA Vaccine. Pharmaceutics, 2021, 13, 673.	4.5	9

#	Article	IF	CITATIONS
19	Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discovery Today, 2021, 26, 2575-2592.	6.4	42
20	Development of Peptide-Based Nanoparticles for Mitochondrial Plasmid DNA Delivery. Polymers, 2021, 13, 1836.	4.5	11
21	In Silico Approaches: A Way to Unveil Novel Therapeutic Drugs for Cervical Cancer Management. Pharmaceuticals, 2021, 14, 741.	3.8	19
22	Development of Tailor-Made Dendrimer Ternary Complexes for Drug/Gene Co-Delivery in Cancer. Pharmaceutics, 2021, 13, 1256.	4.5	5
23	Design of Experiments to Achieve an Efficient Chitosan-Based DNA Vaccine Delivery System. Pharmaceutics, 2021, 13, 1369.	4.5	13
24	A new insight in gellan microspheres application to capture a plasmid DNA vaccine from an Escherichia coli lysate. Separation and Purification Technology, 2021, 274, 119013.	7.9	3
25	Editorial: Nanotechnology for Precision Cancer Therapy: Advances in Gene Therapy, Immunotherapy, and 3D Bioprinting. Frontiers in Nanotechnology, 2021, 3, .	4.8	0
26	Minicircle DNA Vaccine Purification and E7 Antigen Expression Assessment. Methods in Molecular Biology, 2021, 2197, 207-222.	0.9	2
27	Conception of Plasmid DNA and Polyethylenimine Delivery Systems with Potential Application in Field. Methods in Molecular Biology, 2021, 2197, 271-284.	0.9	1
28	The use of size-exclusion chromatography in the isolation of supercoiled minicircle DNA from Escherichia coli lysate. Journal of Chromatography A, 2020, 1609, 460444.	3.7	14
29	Cancer gene therapy mediated by RALA/plasmid DNA vectors: Nitrogen to phosphate groups ratio (N/P) as a tool for tunable transfection efficiency and apoptosis. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110610.	5.0	26
30	Quality assessment of supercoiled minicircle DNA by cadaverine-modified analytical chromatographic monolith. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180, 113037.	2.8	3
31	Minicircle DNA: The Future for DNA-Based Vectors?. Trends in Biotechnology, 2020, 38, 1047-1051.	9.3	22
32	Enhancement of a biotechnological platform for the purification and delivery of a human papillomavirus supercoiled plasmid DNA vaccine. New Biotechnology, 2020, 59, 1-9.	4.4	5
33	Purification of supercoiled p53-encoding plasmid using an arginine-modified macroporous support. Journal of Chromatography A, 2020, 1618, 460890.	3.7	7
34	Design of experiments to select triphenylphosphonium-polyplexes with suitable physicochemical properties for mitochondrial gene therapy. Journal of Molecular Liquids, 2020, 302, 112488.	4.9	11
35	Polymer-peptide ternary systems as a tool to improve the properties of plasmid DNA vectors in gene delivery. Journal of Molecular Liquids, 2020, 309, 113157.	4.9	9
36	Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Frontiers in Cell and Developmental Biology, 2020, 8, 592868.	3.7	20

#	Article	IF	CITATIONS
37	Sub-100 nm Chitosan-Triphosphate-DNA Nanoparticles for Delivery of DNA Vaccines. Proceedings (mdpi), 2020, 78, .	0.2	2
38	Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discovery Today, 2019, 24, 2044-2057.	6.4	57
39	Methotrexate-plasmid DNA polyplexes for cancer therapy: Characterization, cancer cell targeting ability and tuned in vitro transfection. Journal of Molecular Liquids, 2019, 292, 111391.	4.9	19
40	Optimization of peptide-plasmid DNA vectors formulation for gene delivery in cancer therapy exploring design of experiments. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110417.	5.0	25
41	Biosynthesis and isolation of gellan polysaccharide to formulate microspheres for protein capture. Carbohydrate Polymers, 2019, 220, 236-246.	10.2	17
42	Minicircle DNA purification: Performance of chromatographic monoliths bearing lysine and cadaverine ligands. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1118-1119, 7-16.	2.3	13
43	Effect of Chromatographic Conditions on Supercoiled Plasmid DNA Stability and Bioactivity. Applied Sciences (Switzerland), 2019, 9, 5170.	2.5	9
44	Composite Central Face Design—An Approach to Achieve Efficient Alginate Microcarriers. Polymers, 2019, 11, 1949.	4.5	10
45	DoE to improve supercoiled p53-pDNA purification by O-phospho-l-tyrosine chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1105, 184-192.	2.3	10
46	HPVâ€16 targeted DNA vaccine expression: The role of purification. Biotechnology Progress, 2018, 34, 546-551.	2.6	5
47	Arginine homopeptides for plasmid DNA purification using monolithic supports. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1087-1088, 149-157.	2.3	6
48	The biological performance of purified supercoiled p53 plasmid DNA in different cancer cell lines. Process Biochemistry, 2018, 75, 240-249.	3.7	8
49	Finding the ideal polyethylenimine-plasmid DNA system for co-delivery of payloads in cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 170, 627-636.	5.0	25
50	Chromatographic HPVâ€16 E6/E7 plasmid vaccine purification employing Lâ€histidine and 1â€benzylâ€Lâ€histidina affinity ligands. Electrophoresis, 2017, 38, 2975-2980.	າe 2.4	7
51	Minicircle DNA purification using a CIM® DEAEâ€1 monolithic support. Journal of Separation Science, 2016, 39, 3544-3549.	2.5	13
52	Purification of influenza deoxyribonucleic acid-based vaccine using agmatine monolith. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1012-1013, 153-161.	2.3	11
53	Screening of L-histidine based ligands to purify the supercoiled plasmid DNA isoform. , 2015, , .		O
54	Optimization of supercoiled HPV-16 E6/E7 plasmid DNA purification with arginine monolith using design of experiments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 978-979, 145-150.	2.3	21

#	Article	IF	CITATIONS
55	Screening of <scp>l</scp> â€histidineâ€based ligands to modify monolithic supports and selectively purify the supercoiled plasmid DNA isoform. Journal of Molecular Recognition, 2015, 28, 349-358.	2.1	6
56	Application of ethylenediamine monolith to purify a hemagglutinin influenza deoxyribonucleic acid-based vaccine. Separation and Purification Technology, 2015, 154, 320-327.	7.9	10
57	p53-Encoding pDNA Purification by Affinity Chromatography for Cancer Therapy. Methods in Molecular Biology, 2015, 1317, 109-124.	0.9	0
58	Pharmaceutical-grade pre-miR-29 purification using an agmatine monolithic support. Journal of Chromatography A, 2014, 1368, 173-182.	3.7	9
59	Purification of pre-miR-29 by a new O-phospho-l-tyrosine affinity chromatographic strategy optimized using design of experiments. Journal of Chromatography A, 2014, 1343, 119-127.	3.7	16
60	Optimization of a chromatographic stationary phase based on gellan gum using central composite design. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 957, 46-52.	2.3	6
61	New approach for purification of pre-miR-29 using lysine-affinity chromatography. Journal of Chromatography A, 2014, 1331, 129-132.	3.7	12
62	Molecular recognition of oligonucleotides and plasmid DNA by <scp>l</scp> -methionine. Journal of Molecular Recognition, 2014, 27, 588-596.	2.1	3
63	Quantitative analysis of histamine- and agmatine–DNA interactions using surface plasmon resonance. International Journal of Biological Macromolecules, 2014, 70, 131-137.	7.5	5
64	Plasmid DNA purification by integrating membrane technology with arginine affinity chromatography. New Biotechnology, 2014, 31, S120.	4.4	0
65	Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications. Journal of Chromatography A, 2014, 1366, 110-119.	3.7	11
66	Purification of pre-miR-29 by arginine-affinity chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 951-952, 16-23.	2.3	32
67	Effect of chromatographic conditions and plasmid DNA size on the dynamic binding capacity of a monolithic support. Journal of Separation Science, 2014, 37, 2284-2292.	2.5	14
68	Histamine monolith versatility to purify supercoiled plasmid deoxyribonucleic acid from Escherichia coli lysate. Journal of Chromatography A, 2014, 1355, 125-133.	3.7	27
69	Supercoiled plasmid <scp>DNA</scp> purification by integrating membrane technology with a monolithic chromatography. Journal of Separation Science, 2014, 37, 1229-1236.	2.5	6
70	Selective purification of supercoiled p53-encoding pDNA with l-methionine–agarose matrix. Analytical Biochemistry, 2014, 459, 61-69.	2.4	8
71	Affinity analysis between immobilized l-arginine and plasmid isoforms provided by surface plasmon resonance. Analytical Methods, 2013, 5, 1682.	2.7	8
72	Rapid quantification of supercoiled plasmid deoxyribonucleic acid using a monolithic ion exchanger. Journal of Chromatography A, 2013, 1291, 114-121.	3.7	23

#	Article	IF	Citations
73	Purification of human papillomavirus 16 E6/E7 plasmid deoxyribonucleic acid-based vaccine using an arginine modified monolithic support. Journal of Chromatography A, 2013, 1320, 72-79.	3.7	35
74	Advances in chromatographic supports for pharmaceuticalâ€grade plasmid DNA purification. Journal of Separation Science, 2012, 35, 3046-3058.	2.5	53
75	Study of the specific interaction between l-methionine chromatography support and nucleotides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 909, 1-5.	2.3	5
76	Impact of lysine-affinity chromatography on supercoiled plasmid DNA purification. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3507-3515.	2.3	25
77	Successful application of monolithic innovative technology using a carbonyldiimidazole disk to purify supercoiled plasmid DNA suitable for pharmaceutical applications. Journal of Chromatography A, 2011, 1218, 8333-8343.	3.7	33
78	Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. Journal of Controlled Release, 2011, 156, 212-222.	9.9	63
79	Performance of a non-grafted monolithic support for purification of supercoiled plasmid DNA. Journal of Chromatography A, 2011, 1218, 1701-1706.	3.7	29
80	Differential interactions of plasmid DNA, RNA and genomic DNA with amino acidâ€based affinity matrices. Journal of Separation Science, 2010, 33, 2610-2618.	2.5	40
81	Selectivity of arginine chromatography in promoting different interactions using synthetic oligonucleotides as model. Journal of Separation Science, 2009, 32, 1665-1672.	2.5	20
82	Histidine affinity chromatography of homoâ€oligonucleotides. Role of multiple interactions on retention. Biomedical Chromatography, 2009, 23, 745-753.	1.7	30
83	Biorecognition of supercoiled plasmid DNA isoform in lysine-affinity chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3257-3260.	2.3	28
84	Separation of different forms of proteose peptone 3 by hydrophobic interaction chromatography with a dual salt system. Biomedical Chromatography, 2008, 22, 447-449.	1.7	12
85	Tyrosinase Immobilization in Nickel-Cross-Linked Gellan Microspheres and Conversion of l-DOPA to Dopachrome. Journal of Chemical Education, 0, , .	2.3	1
86	Hands-On Laboratory Class for Biopharmaceutical pDNA Quality Control. Journal of Chemical Education, $0, , .$	2.3	2
87	3D Printing for Affinity Chromatographic Support Production. , 0, , .		0
88	Polymeric Blends with Copper: A Powerful Weapon against Pathogenic Spread., 0,,.		0
89	Chitosan–Silver Nanoconjugates to Achieve Enhanced Antimicrobial Effect and Fight Cervical Cancer. , 0, , .		0