
David L Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1990502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparative Study of Magnetic Flux Ropes in the Nightside Induced Magnetosphere of Mars and Venus. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
2	Properties of Electron Distributions in the Martian Space Environment. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	1
3	Empirically Determined Auroral Electron Events at Mars—MAVEN Observations. Geophysical Research Letters, 2022, 49, .	4.0	8
4	Microâ€Scale Plasma Instabilities in the Interaction Region of the Solar Wind and the Martian Upper Atmosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
5	MAVEN Observations of H ^{â^'} lons in the Martian Atmosphere. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	1
6	The Endurance Rocket Mission. Space Science Reviews, 2022, 218, .	8.1	2
7	The Influence of Magnetic Field Topology and Orientation on the Distribution of Thermal Electrons in the Martian Magnetotail. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028130.	2.4	3
8	Crossâ€Shock Electrostatic Potentials at Mars Inferred From MAVEN Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029064.	2.4	6
9	Observations of Energized Electrons in the Martian Magnetosheath. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028984.	2.4	6
10	Betatron Cooling of Electrons in Martian Magnetotail. Geophysical Research Letters, 2021, 48, e2021GL093826.	4.0	12
11	Martian Crustal Field Influence on O ⁺ and O ₂ ⁺ Escape as Measured by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029234.	2.4	14
12	The Structure of the Martian Quasiâ€Perpendicular Supercritical Shock as Seen by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028938.	2.4	6
13	Magnetic Topology at Venus: New Insights Into the Venus Plasma Environment. Geophysical Research Letters, 2021, 48, e2021GL095545.	4.0	4
14	MAVEN Observations of Low Frequency Steepened Magnetosonic Waves and Associated Heating of the Martian Nightside Ionosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029615.	2.4	8
15	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6
16	In Situ Measurements of Thermal Ion Temperature in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029531.	2.4	17
17	Ionization Efficiency in the Dayside Ionosphere of Mars: Structure and Variability. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006923.	3.6	5
18	Global Ambipolar Potentials and Electric Fields at Mars Inferred From MAVEN Observations. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	9

#	Article	IF	CITATIONS
19	Magnetic Holes Upstream of the Martian Bow Shock: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027198.	2.4	19
20	Foreshock Cavities at Venus and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028023.	2.4	7
21	Superthermal Electron Deposition on the Mars Nightside During ICMEs. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028430.	2.4	3
22	Ion Jets Within Current Sheets in the Martian Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028576.	2.4	20
23	Variations in Nightside Magnetic Field Topology at Mars. Geophysical Research Letters, 2020, 47, e2020GL088921.	4.0	15
24	The Influence of Interplanetary Magnetic Field Direction on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2020, 47, e2020GL087757.	4.0	25
25	Properties of Plasma Waves Observed Upstream From Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028221.	2.4	17
26	First Detection of Kilometerâ€ 5 cale Density Irregularities in the Martian Ionosphere. Geophysical Research Letters, 2020, 47, e2020GL090906.	4.0	7
27	The Magnetic Structure of the Subsolar MPB Current Layer From MAVEN Observations: Implications for the Hall Electric Force. Geophysical Research Letters, 2020, 47, e2020GL089230.	4.0	6
28	Localized Heating of the Martian Topside Ionosphere Through the Combined Effects of Magnetic Pumping by Largeâ€6cale Magnetosonic Waves and Pitch Angle Diffusion by Whistler Waves. Geophysical Research Letters, 2020, 47, e2019GL086408.	4.0	17
29	Characterizing Mars's Magnetotail Topology With Respect to the Upstream Interplanetary Magnetic Fields. Journal of Geophysical Research: Space Physics, 2020, 125, no.	2.4	21
30	Subsolar Electron Temperatures in the Lower Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027597.	2.4	6
31	Constantly forming sporadic E-like layers and rifts in the Martian ionosphere and their implications for Earth. Nature Astronomy, 2020, 4, 486-491.	10.1	14
32	Invertedâ€V Electron Acceleration Events Concurring With Localized Auroral Observations at Mars by MAVEN. Geophysical Research Letters, 2020, 47, e2020GL087414.	4.0	26
33	Statistical Study of Heavy Ion Outflows From Mars Observed in the Martianâ€Induced Magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 2019, 124, 5482-5497.	2.4	29
34	Dawn/Dusk Asymmetry of the Martian UltraViolet Terminator Observed Through Suprathermal Electron Depletions. Journal of Geophysical Research: Space Physics, 2019, 124, 7283-7300.	2.4	6
35	A Fast Fermi Acceleration at Mars Bow Shock. Journal of Geophysical Research: Space Physics, 2019, 124, 5528-5538.	2.4	9
36	Spectral Analysis of Accelerated Electron Populations at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 8056-8065.	2.4	9

#	Article	IF	CITATIONS
37	The Relationship Between Photoelectron Boundary and Steep Electron Density Gradient on Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8015-8022.	2.4	10
38	MAVEN and MEX Multiâ€instrument Study of the Dayside of the Martian Induced Magnetospheric Structure Revealed by Pressure Analyses. Journal of Geophysical Research: Space Physics, 2019, 124, 8564-8589.	2.4	39
39	Low Electron Temperatures Observed at Mars by MAVEN on Dayside Crustal Magnetic Field Lines. Journal of Geophysical Research: Space Physics, 2019, 124, 7629-7637.	2.4	8
40	Thin Current Sheets of Subâ€ion Scales observed by MAVEN in the Martian Magnetotail. Geophysical Research Letters, 2019, 46, 6214-6222.	4.0	21
41	Mapping the Lunar Wake Potential Structure With ARTEMIS Data. Journal of Geophysical Research: Space Physics, 2019, 124, 3360-3377.	2.4	15
42	Traveling lonospheric Disturbances at Mars. Geophysical Research Letters, 2019, 46, 4554-4563.	4.0	13
43	Ionospheric Ambipolar Electric Fields of Mars and Venus: Comparisons Between Theoretical Predictions and Direct Observations of the Electric Potential Drop. Geophysical Research Letters, 2019, 46, 1168-1176.	4.0	21
44	A Technique to Infer Magnetic Topology at Mars and Its Application to the Terminator Region. Journal of Geophysical Research: Space Physics, 2019, 124, 1823-1842.	2.4	58
45	The Penetration of Draped Magnetic Field Into the Martian Upper Ionosphere and Correlations With Upstream Solar Wind Dynamic Pressure. Journal of Geophysical Research: Space Physics, 2019, 124, 3021-3035.	2.4	8
46	Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus. Science, 2019, 364, .	12.6	24
47	The Influence of Solar Wind Pressure on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2019, 46, 2347-2354.	4.0	35
48	Magnetic Topology Response to the 2003 Halloween ICME Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 151-165.	2.4	18
49	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	2.4	6
50	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
51	The Morphology of the Topside Martian Ionosphere: Implications on Bulk Ion Flow. Journal of Geophysical Research E: Planets, 2019, 124, 734-751.	3.6	43
52	Collisionless Electron Dynamics in the Magnetosheath of Mars. Geophysical Research Letters, 2019, 46, 11679-11688.	4.0	10
53	Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8707-8726.	2.4	8
54	Correlations between enhanced electron temperatures and electric field wave power in the Martian ionosphere. Geophysical Research Letters, 2018, 45, 493-501.	4.0	9

#	Article	IF	CITATIONS
55	Oneâ€Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476.	2.4	10
56	Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	3.6	38
57	Evidence for Neutralsâ€Foreshock Electrons Impact at Mars. Geophysical Research Letters, 2018, 45, 3768-3774.	4.0	12
58	Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4550-4558.	4.0	44
59	Comparison of Global Martian Plasma Models in the Context of MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3714-3726.	2.4	15
60	Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 7241-7256.	2.4	32
61	Structure and Variability of the Martian Ion Composition Boundary Layer. Journal of Geophysical Research: Space Physics, 2018, 123, 8439-8458.	2.4	24
62	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	2.4	16
63	Investigation of Martian Magnetic Topology Response to 2017 September ICME. Geophysical Research Letters, 2018, 45, 7337-7346.	4.0	39
64	Using Magnetic Topology to Probe the Sources of Mars' Nightside Ionosphere. Geophysical Research Letters, 2018, 45, 12,190.	4.0	36
65	An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophysical Research Letters, 2018, 45, 10,855.	4.0	21
66	Models of Saturn's Equatorial Ionosphere Based on In Situ Data From Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 9398-9407.	4.0	26
67	Fieldâ€Aligned Potentials at Mars From MAVEN Observations. Geophysical Research Letters, 2018, 45, 10,119.	4.0	31
68	The Threeâ€Ðimensional Bow Shock of Mars as Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2018, 123, 4542-4555.	2.4	40
69	Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission. Space Science Reviews, 2018, 214, 1.	8.1	129
70	Modeling Martian Atmospheric Losses over Time: Implications for Exoplanetary Climate Evolution and Habitability. Astrophysical Journal Letters, 2018, 859, L14.	8.3	51
71	Cold Dense Ion Outflow Observed in the Martianâ€Induced Magnetotail by MAVEN. Geophysical Research Letters, 2018, 45, 5283-5289.	4.0	22
72	The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars. Geophysical Research Letters, 2018, 45, 7248-7256.	4.0	29

#	Article	IF	CITATIONS
73	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
74	MAVEN Observations of Solar Windâ€Ðriven Magnetosonic Waves Heating the Martian Dayside Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 4129-4149.	2.4	40
75	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	4.0	66
76	Ionizing Electrons on the Martian Nightside: Structure and Variability. Journal of Geophysical Research: Space Physics, 2018, 123, 4349-4363.	2.4	35
77	Observations and Modeling of the Mars Lowâ€Altitude Ionospheric Response to the 10 September 2017 X lass Solar Flare. Geophysical Research Letters, 2018, 45, 7382-7390.	4.0	30
78	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	4.0	77
79	Fieldâ€Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability. Journal of Geophysical Research E: Planets, 2018, 123, 67-92.	3.6	14
80	MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 2017, 122, 3689-3706.	2.4	55
81	Martian lowâ€altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1831-1852.	2.4	107
82	Martian electron foreshock from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1531-1541.	2.4	12
83	Characterization of turbulence in the Mars plasma environment with MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 656-674.	2.4	30
84	Structure, dynamics, and seasonal variability of the Marsâ€solar wind interaction: MAVEN Solar Wind Ion Analyzer inâ€flight performance and science results. Journal of Geophysical Research: Space Physics, 2017, 122, 547-578.	2.4	191
85	Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4009-4022.	2.4	66
86	Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 5114-5131.	2.4	40
87	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	2.4	21
88	Highâ€Altitude Closed Magnetic Loops at Mars Observed by MAVEN. Geophysical Research Letters, 2017, 44, 11,229.	4.0	26
89	Spontaneous hot flow anomalies at Mars and Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 9910-9923.	2.4	15
90	Characterization of Lowâ€Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions. Journal of Geophysical Research: Space Physics, 2017, 122, 9777-9789.	2.4	52

#	Article	IF	CITATIONS
91	The Martian Photoelectron Boundary as Seen by MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 10,472.	2.4	28
92	Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9723-9737.	2.4	44
93	Statistical analysis of the reflection of incident O ⁺ pickup ions at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4089-4101.	2.4	11
94	Flows, Fields, and Forces in the Marsâ€Solar Wind Interaction. Journal of Geophysical Research: Space Physics, 2017, 122, 11,320.	2.4	64
95	MAVEN Observations of lonospheric Irregularities at Mars. Geophysical Research Letters, 2017, 44, 10,845.	4.0	16
96	Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization. Geophysical Research Letters, 2017, 44, 11248-11256.	4.0	64
97	Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations. Journal of Geophysical Research: Space Physics, 2017, 122, 857-873.	2.4	28
98	Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A timeâ€dependent MHD study. Journal of Geophysical Research: Space Physics, 2017, 122, 1714-1730.	2.4	40
99	Electric Mars: A large transâ€ŧerminator electric potential drop on closed magnetic field lines above Utopia Planitia. Journal of Geophysical Research: Space Physics, 2017, 122, 2260-2271.	2.4	16
100	Dynamic response of the Martian ionosphere to an interplanetary shock: Mars Express and MAVEN observations. Geophysical Research Letters, 2017, 44, 9116-9123.	4.0	14
101	Ion Heating in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 10,612.	2.4	8
102	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	4.0	28
103	Pressure and ion composition boundaries at Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 6417-6429.	2.4	34
104	Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 11,113.	2.4	50
105	MAVEN observations of electronâ€induced whistler mode waves in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 9717-9731.	2.4	27
106	Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 2016, 43, 8876-8884.	4.0	54
107	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	4.0	14
108	Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 2016, 121, 7049-7066.	2.4	38

#	Article	IF	CITATIONS
109	Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 2016, 43, 1426-1434.	4.0	36
110	The electric wind of Venus: A global and persistent "polar windâ€â€like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophysical Research Letters, 2016, 43, 5926-5934.	4.0	31
111	MAVEN observations of partially developed Kelvinâ€Helmholtz vortices at Mars. Geophysical Research Letters, 2016, 43, 4763-4773.	4.0	38
112	MAVEN observation of an obliquely propagating lowâ€frequency wave upstream of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 2374-2389.	2.4	19
113	Martian highâ€altitude photoelectrons independent of solar zenith angle. Journal of Geophysical Research: Space Physics, 2016, 121, 3767-3780.	2.4	28
114	MAVEN observations of energyâ€ŧime dispersed electron signatures in Martian crustal magnetic fields. Geophysical Research Letters, 2016, 43, 939-944.	4.0	18
115	The MAVEN Solar Wind Electron Analyzer. Space Science Reviews, 2016, 200, 495-528.	8.1	217
116	Mars nightside electrons over strong crustal fields. Journal of Geophysical Research: Space Physics, 2016, 121, 3808-3823.	2.4	29
117	Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN. Space Science Reviews, 2015, 195, 357-422.	8.1	99
118	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	4.0	52
119	The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophysical Research Letters, 2015, 42, 8854-8861.	4.0	62
120	Lowâ€frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions. Geophysical Research Letters, 2015, 42, 8917-8924.	4.0	45
121	MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 2015, 42, 8901-8909.	4.0	78
122	Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 2015, 42, 9103-9112.	4.0	54
123	First results of the <scp>MAVEN</scp> magnetic field investigation. Geophysical Research Letters, 2015, 42, 8819-8827.	4.0	102
124	Ionopauseâ€like density gradients in the Martian ionosphere: A first look with MAVEN. Geophysical Research Letters, 2015, 42, 8885-8893.	4.0	42
125	Timeâ€dispersed ion signatures observed in the Martian magnetosphere by MAVEN. Geophysical Research Letters, 2015, 42, 8910-8916.	4.0	25
126	Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophysical Research Letters, 2015, 42, 8877-8884.	4.0	41

#	Article	IF	CITATIONS
127	MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 2015, 42, 9113-9120.	4.0	58
128	Magnetic reconnection in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8838-8845.	4.0	59
129	Auroral spirals at Saturn. Journal of Geophysical Research: Space Physics, 2015, 120, 8633-8643.	2.4	9
130	On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate spaceâ€ground observations. Journal of Geophysical Research: Space Physics, 2015, 120, 8707-8722.	2.4	21
131	Enhanced carbon dioxide causing the dust stormâ€related increase in highâ€altitude photoelectron fluxes at Mars. Geophysical Research Letters, 2015, 42, 9702-9710.	4.0	25
132	Marsward and tailward ions in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8925-8932.	4.0	34
133	Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophysical Research Letters, 2015, 42, 8894-8900.	4.0	28
134	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	4.0	17
135	Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind―electric potential. Geophysical Research Letters, 2015, 42, 9128-9134.	4.0	38
136	Implications of MAVEN Mars nearâ€wake measurements and models. Geophysical Research Letters, 2015, 42, 9087-9094.	4.0	35
137	Titan's interaction with the supersonic solar wind. Geophysical Research Letters, 2015, 42, 193-200.	4.0	40
138	A hot flow anomaly at Mars. Geophysical Research Letters, 2015, 42, 9121-9127.	4.0	20
139	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
140	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
141	Discovery of diffuse aurora on Mars. Science, 2015, 350, aad0313.	12.6	98
142	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
143	The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews, 2015, 195, 125-151.	8.1	300
144	Properties of a large-scale flux rope and current sheet region on the dayside of Mars: MGS MAG/ER and MEX ASPERA-3 ELS observations. Icarus, 2014, 242, 297-315.	2.5	7

#	Article	IF	CITATIONS
145	Solar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fields. Journal of Geophysical Research: Space Physics, 2014, 119, 10,100.	2.4	31
146	Mars photoelectron energy and pitch angle dependence on intense lower atmospheric dust storms. Journal of Geophysical Research E: Planets, 2014, 119, 1689-1706.	3.6	13
147	Investigation of Mars' ionospheric response to solar energetic particle events. Journal of Geophysical Research, 2012, 117, .	3.3	26
148	Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather, 2012, 10, .	3.7	23
149	Observation of conical electron distributions over Martian crustal magnetic fields. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	15
150	Photoelectrons on closed crustal field lines at Mars. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
151	Evaluating predictions of ICME arrival at Earth and Mars. Space Weather, 2011, 9, .	3.7	20
152	The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity. Space Science Reviews, 2009, 142, 157-231.	8.1	170
153	IBEX—Interstellar Boundary Explorer. Space Science Reviews, 2009, 146, 11-33.	8.1	305
154	Response of Jupiter's and Saturn's auroral activity to the solar wind. Journal of Geophysical Research, 2009, 114, .	3.3	161
155	Distribution and variability of accelerated electrons at Mars. Advances in Space Research, 2008, 41, 1347-1352.	2.6	30
156	Electron reflectometry in the martian atmosphere. Icarus, 2008, 194, 544-561.	2.5	35
157	Continuous monitoring of nightside upper thermospheric mass densities in the martian southern hemisphere over 4 martian years using electron reflectometry. Icarus, 2008, 194, 562-574.	2.5	19
158	An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo. Icarus, 2008, 194, 575-596.	2.5	106
159	Evidence for collisionless magnetic reconnection at Mars. Geophysical Research Letters, 2008, 35, .	4.0	94
160	Energetic ion precipitation at Titan. Geophysical Research Letters, 2008, 35, .	4.0	128
161	A global map of Mars' crustal magnetic field based on electron reflectometry. Journal of Geophysical Research, 2007, 112, .	3.3	61
162	Model calculations of electron precipitation induced ionization patches on the nightside of Mars. Geophysical Research Letters, 2007, 34, .	4.0	47

#	Article	IF	CITATIONS
163	Electron pitch angle distributions as indicators of magnetic field topology near Mars. Journal of Geophysical Research, 2007, 112, .	3.3	153
164	On the origin of aurorae on Mars. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	139
165	Role of plasma waves in Mars' atmospheric loss. Geophysical Research Letters, 2006, 33, .	4.0	71
166	Current sheets at low altitudes in the Martian magnetotail. Geophysical Research Letters, 2006, 33, .	4.0	56
167	Whistler waves observed near lunar crustal magnetic sources. Geophysical Research Letters, 2006, 33, ·	4.0	51
168	Numerical interpretation of high-altitude photoelectron observations. Icarus, 2006, 182, 383-395.	2.5	56
169	The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 2006, 182, 464-473.	2.5	82
170	Electrons and magnetic fields in the lunar plasma wake. Journal of Geophysical Research, 2005, 110, .	3.3	133
171	Tectonic implications of Mars crustal magnetism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14970-14975.	7.1	254
172	Mars Global Surveyor observations of the Halloween 2003 solar superstorm's encounter with Mars. Journal of Geophysical Research, 2005, 110, .	3.3	60
173	Large negative lunar surface potentials in sunlight and shadow. Geophysical Research Letters, 2005, 32, .	4.0	67
174	Variability of the altitude of the Martian sheath. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	121
175	Probing upper thermospheric neutral densities at Mars using electron reflectometry. Geophysical Research Letters, 2005, 32, .	4.0	19
176	Correlations between magnetic anomalies and surface geology antipodal to lunar impact basins. Journal of Geophysical Research, 2005, 110, .	3.3	47
177	MGS MAG/ER observations at the magnetic pileup boundary of Mars: draping enhancement and low frequency waves. Advances in Space Research, 2004, 33, 1938-1944.	2.6	50
178	Mapping crustal magnetic fields at Mars using electron reflectometry. Geophysical Research Letters, 2004, 31, .	4.0	46
179	Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations. Geophysical Research Letters, 2003, 30, .	4.0	89
180	A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data. Journal of Geophysical Research, 2003, 108, .	3.3	92

#	Article	IF	CITATIONS
181	Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with aBfield-dependent transport code. Journal of Geophysical Research, 2003, 108, .	3.3	35
182	A CMOS time-of-flight system-on-a-chip for spacecraft instruments. IEEE Transactions on Nuclear Science, 2002, 49, 1156-1163.	2.0	87
183	Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. Journal of Geophysical Research, 2002, 107, SMP 9-1.	3.3	107
184	Observations of the latitude dependence of the location of the martian magnetic pileup boundary. Geophysical Research Letters, 2002, 29, 11-1-11-4.	4.0	100
185	Evidence for negative charging of the lunar surface in shadow. Geophysical Research Letters, 2002, 29, 77-1-77-4.	4.0	90
186	Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars. Journal of Geophysical Research, 2002, 107, SIA 2-1.	3.3	77
187	Magnetospheric and Plasma Science with Cassini-Huygens. Space Science Reviews, 2002, 104, 253-346.	8.1	47
188	Hot diamagnetic cavities upstream of the Martian bow shock. Geophysical Research Letters, 2001, 28, 887-890.	4.0	50
189	Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. Journal of Geophysical Research, 2001, 106, 23403-23417.	3.3	301
190	Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer. Journal of Geophysical Research, 2001, 106, 23419-23427.	3.3	305
191	The global magnetic field of Mars and implications for crustal evolution. Geophysical Research Letters, 2001, 28, 4015-4018.	4.0	248
192	Evidence of electron impact ionization in the magnetic pileup boundary of Mars. Geophysical Research Letters, 2000, 27, 45-48.	4.0	67
193	The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAC/ER Experiment onboard Mars Global Surveyor. Geophysical Research Letters, 2000, 27, 49-52.	4.0	300
194	Oxygen auger electrons observed in Mars' ionosphere. Geophysical Research Letters, 2000, 27, 1871-1874.	4.0	88
195	Clobal Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment. Science, 1999, 284, 790-793.	12.6	914
196	Magnetic Lineations in the Ancient Crust of Mars. Science, 1999, 284, 794-798.	12.6	462
197	Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector Magnetometer data. Geophysical Research Letters, 1999, 26, 2327-2330.	4.0	144
198	Venus-like interaction of the solar wind with Mars. Geophysical Research Letters, 1999, 26, 2685-2688.	4.0	114

3

# /	Article	IF	CITATIONS
199	Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Clobal Surveyor Mission. Science, 1998, 279, 1676-1680.	12.6	670

200 A time-of-flight system on a chip suitable for space instrumentation. , 0, , .