Herbert E Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1990440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biotic ligand model of the acute toxicity of metals. 1. Technical Basis. Environmental Toxicology and Chemistry, 2001, 20, 2383-2396.	4.3	1,100
2	Solid-Solution Partitioning of Metals in Contaminated Soils:Â Dependence on pH, Total Metal Burden, and Organic Matter. Environmental Science & Technology, 2000, 34, 1125-1131.	10.0	961
3	Analysis of acidâ€volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 1993, 12, 1441-1453.	4.3	483
4	Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and <i>Daphnia</i> . Environmental Toxicology and Chemistry, 2001, 20, 2397-2402.	4.3	457
5	A Terrestrial Biotic Ligand Model. 1. Development and Application to Cu and Ni Toxicities to Barley Root Elongation in Soils. Environmental Science & Technology, 2006, 40, 7085-7093.	10.0	224
6	Kinetics of Mercury(II) Adsorption and Desorption on Soil. Environmental Science & Technology, 1997, 31, 496-503.	10.0	200
7	Binding of Nickel and Copper to Fish Gills Predicts Toxicity When Water Hardness Varies, But Free-Ion Activity Does Not. Environmental Science & Technology, 1999, 33, 913-916.	10.0	182
8	Effect of kinetics of complexation by humic acid on toxicity of copper to <i>Ceriodaphnia dubia</i> . Environmental Toxicology and Chemistry, 1999, 18, 828-837.	4.3	162
9	Predicting Soilâ~'Water Partition Coefficients for Cadmium. Environmental Science & Technology, 1996, 30, 3418-3424.	10.0	147
10	Influence of dissolved organic matter on the toxicity of copper to <i>Ceriodaphnia dubia</i> : Effect of complexation kinetics. Environmental Toxicology and Chemistry, 1999, 18, 2433-2437.	4.3	117
11	Novel Model Describing Trace Metal Concentrations in the Earthworm,Eisenia andrei. Environmental Science & Technology, 2001, 35, 4522-4529.	10.0	102
12	Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environmental Pollution, 2014, 188, 144-152.	7.5	90
13	Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environmental Toxicology and Chemistry, 2002, 21, 1736-1744.	4.3	82
14	Effect of aeration of sediment on cadmium binding. Environmental Toxicology and Chemistry, 1994, 13, 717-724.	4.3	71
15	Predicting the bioavailability of copper and zinc in soils: Modeling the partitioning of potentially bioavailable copper and zinc from soil solid to soil solution. Environmental Toxicology and Chemistry, 2003, 22, 1380-1386.	4.3	59
16	A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles. Ecotoxicology and Environmental Safety, 2015, 119, 66-73.	6.0	48
17	Prediction of uptake of copper from solution by lettuce (Lactuca sativaRomance). Environmental Toxicology and Chemistry, 2001, 20, 2544-2551.	4.3	47
18	Chemical Interactions between Cr(VI) and Hydrous Concrete Particles. Environmental Science & Technology, 1996, 30, 371-376.	10.0	46

Herbert E Allen

#	Article	IF	CITATIONS
19	EFFECT OF SOIL PROPERTIES ON COPPER RELEASE IN SOIL SOLUTIONS AT LOW MOISTURE CONTENT. Environmental Toxicology and Chemistry, 2006, 25, 671.	4.3	45
20	Relationship between soil copper content and copper content of selected crop plants in central Chile. Environmental Toxicology and Chemistry, 2001, 20, 2749-2757.	4.3	40
21	Fenton Oxidation of Polycyclic Aromatic Hydrocarbons After Surfactant-Enhanced Soil Washing. Environmental Engineering Science, 2000, 17, 233-244.	1.6	33
22	Effect of copper binding by suspended particulate matter on toxicity. Environmental Toxicology and Chemistry, 2002, 21, 710-714.	4.3	27
23	Reduction of 3-Nitro-1,2,4-Triazol-5-One (NTO) by the Hematite–Aqueous Fe(II) Redox Couple. Environmental Science & Technology, 2020, 54, 12191-12201.	10.0	25
24	Development and validation of a terrestrial biotic ligand model for Ni toxicity to barley root elongation for non-calcareous soils. Environmental Pollution, 2015, 202, 41-49.	7.5	19
25	Physicochemical factors affecting the sensitivity of Ceriodaphnia dubia to copper. Environmental Monitoring and Assessment, 2001, 70, 105-116.	2.7	17
26	The effect of moisture content on the release of organic matter and copper to soil solutions. Geoderma, 2006, 135, 204-215.	5.1	17
27	Experimental Validation of Hydrogen Atom Transfer Gibbs Free Energy as a Predictor of Nitroaromatic Reduction Rate Constants. Environmental Science & Technology, 2019, 53, 5816-5827.	10.0	17
28	Importance of Clean Techniques and Speciation in Assessing Water Quality for Metals. Human and Ecological Risk Assessment (HERA), 2000, 6, 989-1002.	3.4	14
29	Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity. Environmental Toxicology and Chemistry, 2016, 35, 2125-2133.	4.3	14
30	ANALYSIS OF ACID-VOLATILE SULFIDE (AVS) AND SIMULTANEOUSLY EXTRACTED METALS (SEM) FOR THE ESTIMATION OF POTENTIAL TOXICITY IN AQUATIC SEDIMENTS. Environmental Toxicology and Chemistry, 1993, 12, 1441.	4.3	13
31	Environmental transformation mechanisms of thiodiglycol. Environmental Toxicology and Chemistry, 1998, 17, 1720-1726.	4.3	12
32	Bioconcentration factors and plant–water partition coefficients of munitions compounds in barley. Chemosphere, 2017, 189, 538-546.	8.2	12
33	Validation of Cu toxicity to barley root elongation in soil with a Terrestrial Biotic Ligand Model developed from sand culture. Ecotoxicology and Environmental Safety, 2018, 148, 336-345.	6.0	12
34	Effect of Field Aging on Nickel Concentration in Soil Solutions. Communications in Soil Science and Plant Analysis, 2008, 39, 510-523.	1.4	10
35	Experimental determination of solvent-water partition coefficients and Abraham parameters for munition constituents. Chemosphere, 2016, 161, 429-437.	8.2	9
36	Predicting Cr(vi) adsorption on soils: the role of the competition of soil organic matter. Environmental Sciences: Processes and Impacts, 2020, 22, 95-104.	3.5	8

Herbert E Allen

#	Article	IF	CITATIONS
37	RELATIONSHIP BETWEEN SOIL COPPER CONTENT AND COPPER CONTENT OF SELECTED CROP PLANTS IN CENTRAL CHILE. Environmental Toxicology and Chemistry, 2001, 20, 2749.	4.3	8
38	Effects of pH, chloride and Calcium(II) on adsorption of monomethylmercury by soils. Environmental Toxicology and Chemistry, 1997, 16, 2457-2462.	4.3	7
39	Reductive Transformation of 3-Nitro-1,2,4-triazol-5-one (NTO) by Leonardite Humic Acid and Anthraquinone-2,6-disulfonate (AQDS). Environmental Science & Technology, 2021, 55, 12973-12983.	10.0	7
40	Removal of soluble Cu and Pb by the automatic drip coffee brewing process: Application to risk assessment. Human and Ecological Risk Assessment (HERA), 2000, 6, 313-322.	3.4	6
41	Leaching of propellant compounds from munition residues may be controlled by sorption to nitrocellulose. Science of the Total Environment, 2017, 599-600, 2135-2141.	8.0	6
42	Sorption and desorption kinetics of nitroglycerin and 2,4-dinitrotoluene in nitrocellulose and implications for residue-bound energetic materials. Water Research, 2018, 128, 138-147.	11.3	6
43	Kinetics and equilibria of metalâ€containing materials: Ramifications for aquatic toxicity testing for classification of sparingly soluble metals, inorganic metal compounds and minerals. Human and Ecological Risk Assessment (HERA), 1997, 3, 397-413.	3.4	4
44	Modeling the Reversible and Resistant Components of Munition Constituent Adsorption and Desorption on Soils. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	4
45	Hydrogen Atom Transfer Reaction Free Energy as a Predictor of Abiotic Nitroaromatic Reduction Rate Constants: A Comprehensive Analysis. Environmental Toxicology and Chemistry, 2020, 39, 1678-1684.	4.3	4
46	Effect of pH on Metal Uptake by Anaerobic Sludge. Environmental Engineering Science, 2007, 24, 1095-1104.	1.6	3
47	A Unified Linear Free Energy Relationship for Abiotic Reduction Rate of Nitroaromatics and Hydroquinones Using Quantum Chemically Estimated Energies. Environmental Toxicology and Chemistry, 2020, 39, 2389-2395.	4.3	3
48	Modeling the Reduction Kinetics of Munition Compounds by Humic Acids. Environmental Science & Technology, 2022, 56, 4926-4935.	10.0	3
49	Cadmium Release in Soil Solutions at Low Moisture Content. Communications in Soil Science and Plant Analysis, 2007, 39, 158-167.	1.4	2
50	EFFECT OF SOIL COPPER CONTENT AND pH ON COPPER UPTAKE OF SELECTED VEGETABLES GROWN UNDER CONTROLLED CONDITIONS. Environmental Toxicology and Chemistry, 2002, 21, 1736.	4.3	1