Guanghui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1990421/publications.pdf

Version: 2024-02-01

32	1,134	17 h-index	32
papers	citations		g-index
34	34	34	894
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Biomineralized Bacterial Outer Membrane Vesicles Potentiate Safe and Efficient Tumor Microenvironment Reprogramming for Anticancer Therapy. Advanced Materials, 2020, 32, e2002085.	11.1	118
2	MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nature Communications, 2021, 12, 6399.	5.8	95
3	Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Science Translational Medicine, 2021, 13, eabb6981.	5.8	84
4	Targeted exosome coating gene-chem nanocomplex as "nanoscavengerâ€for clearing α-synuclein and immune activation of Parkinson's disease. Science Advances, 2020, 6, .	4.7	83
5	Particulate Alum via Pickering Emulsion for an Enhanced COVIDâ€19 Vaccine Adjuvant. Advanced Materials, 2020, 32, e2004210.	11.1	65
6	Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. Science Advances, 2020, 6, eaay7735.	4.7	58
7	Near-infrared light–triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Science Advances, 2021, 7, .	4.7	57
8	Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nature Biomedical Engineering, 2021, 5, 414-428.	11.6	56
9	Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduction and Targeted Therapy, 2022, 7, 74.	7.1	52
10	Engineering the Deformability of Albuminâ€Stabilized Emulsions for Lymphâ€Node Vaccine Delivery. Advanced Materials, 2021, 33, e2100106.	11.1	51
11	Biosynthesis of Selfâ€Assembled Proteinaceous Nanoparticles for Vaccination. Advanced Materials, 2020, 32, e2002940.	11.1	50
12	Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nature Nanotechnology, 2021, 16, 1413-1423.	15.6	44
13	Tumor Exosomes Reprogrammed by Low pH Are Efficient Targeting Vehicles for Smart Drug Delivery and Personalized Therapy against their Homologous Tumor. Advanced Science, 2021, 8, 2002787.	5.6	38
14	The molecular mechanism of robust macrophage immune responses induced by PEGylated molybdenum disulfide. Nanoscale, 2019, 11, 22293-22304.	2.8	35
15	In Situ Generation of Gold Nanoparticles on Bacteriaâ€Derived Magnetosomes for Imagingâ€Guided Starving/Chemodynamic/Photothermal Synergistic Therapy against Cancer. Advanced Functional Materials, 2022, 32, .	7.8	24
16	Exploiting the Lymph-Node-Amplifying Effect for Potent Systemic and Gastrointestinal Immune Responses <i>via</i> Polymer/Lipid Nanoparticles. ACS Nano, 2019, 13, 13809-13817.	7.3	23
17	Choice of Nanovaccine Delivery Mode Has Profound Impacts on the Intralymph Node Spatiotemporal Distribution and Immunotherapy Efficacy. Advanced Science, 2020, 7, 2001108.	5.6	21
18	Aggregating particles on the O/W interface: Tuning Pickering emulsion for the enhanced drug delivery systems. Aggregate, 2022, 3, .	5.2	19

#	Article	IF	CITATIONS
19	Engineering mannosylated pickering emulsions for the targeted delivery of multicomponent vaccines. Biomaterials, 2022, 280, 121313.	5.7	18
20	An Apoferritin–Hemagglutinin Conjugate Vaccine with Encapsulated Nucleoprotein Antigen Peptide from Influenza Virus Confers Enhanced Cross Protection. Bioconjugate Chemistry, 2020, 31, 1948-1959.	1.8	17
21	Recent research and development of local anesthetic-loaded microspheres. Journal of Materials Chemistry B, 2020, 8, 6322-6332.	2.9	16
22	Synthetic Particles for Cancer Vaccines: Connecting the Inherent Supply Chain. Accounts of Chemical Research, 2020, 53, 2068-2080.	7.6	15
23	Lymph Node-Targeting Nanovaccine through Antigen-CpG Self-Assembly Potentiates Cytotoxic T Cell Activation. Journal of Immunology Research, 2018, 2018, 1-10.	0.9	14
24	<i>In vivo</i> immunological response of exposure to PEGylated graphene oxide <i>via</i> intraperitoneal injection. Journal of Materials Chemistry B, 2020, 8, 6845-6856.	2.9	14
25	Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Advanced Drug Delivery Reviews, 2021, 176, 113871.	6.6	13
26	Unique stabilizing mechanism provided by biocompatible choline-based ionic liquids for inhibiting dissociation of inactivated foot-and-mouth disease virus particles. RSC Advances, 2019, 9, 13933-13939.	1.7	12
27	Mechanical determination of particle–cell interactions and the associated biomedical applications. Journal of Materials Chemistry B, 2018, 6, 7129-7143.	2.9	9
28	Biomimic strategies for modulating the interaction between particle adjuvants and antigen-presenting cells. Biomaterials Science, 2020, 8, 2366-2375.	2.6	9
29	Double Emulsionâ€Templated Singleâ€Core PLGA Microcapsules with Narrow Size Distribution and Controllable Structure by Using Premix Membrane Emulsification. ChemNanoMat, 2020, 6, 1059-1062.	1.5	9
30	A Novel Particulate Delivery System Based on Antigen–Zn ²⁺ Coordination Interactions Enhances Stability and Cellular Immune Response of Inactivated Foot and Mouth Disease Virus. Molecular Pharmaceutics, 2020, 17, 2952-2963.	2.3	7
31	A novel multiple emulsion enhanced immunity <i>via</i> its biomimetic delivery approach. Journal of Materials Chemistry B, 2020, 8, 7365-7374.	2.9	6
32	Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chemical Engineering Science, 2021, 232, 116343.	1.9	1