List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1990157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suicide nanoplasmids coding for ribosome-inactivating proteins. European Journal of Pharmaceutical Sciences, 2022, 170, 106107.	1.9	4
2	Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins, 2022, 14, 478.	1.5	4
3	Involvement of CD26 in Differentiation and Functions of Th1 and Th17 Subpopulations of T Lymphocytes. Journal of Immunology Research, 2021, 2021, 1-13.	0.9	8
4	Magnetic Nanoparticle-Based Dianthin Targeting for Controlled Drug Release Using the Endosomal Escape Enhancer SO1861. Nanomaterials, 2021, 11, 1057.	1.9	7
5	Pseudomonas Exotoxin A Based Toxins Targeting Epidermal Growth Factor Receptor for the Treatment of Prostate Cancer. Toxins, 2020, 12, 753.	1.5	11
6	Generation of a soluble and stable apoptin-EGF fusion protein, a targeted viral protein applicable for tumor therapy. Protein Expression and Purification, 2020, 175, 105687.	0.6	2
7	Dianthin and Its Potential in Targeted Tumor Therapies. Toxins, 2019, 11, 592.	1.5	11
8	Delayed allogeneic skin graft rejection in CD26-deficient mice. Cellular and Molecular Immunology, 2019, 16, 557-567.	4.8	17
9	Dianthin-30 or gelonin versus monomethyl auristatin E, each configured with an anti-calcitonin receptor antibody, are differentially potent in vitro in high-grade glioma cell lines derived from glioblastoma. Cancer Immunology, Immunotherapy, 2017, 66, 1217-1228.	2.0	15
10	Targeted dianthin is a powerful toxin to treat pancreatic carcinoma when applied in combination with the glycosylated triterpene <scp>SO</scp> 1861. Molecular Oncology, 2017, 11, 1527-1543.	2.1	11
11	Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies. Biomedicines, 2017, 5, 14.	1.4	38
12	Immunotoxins. , 2017, , 1-4.		0
13	Immunotoxins. , 2017, , 2239-2242.		Ο
14	Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers. Toxins, 2016, 8, 200.	1.5	31
15	Saponins from Saponaria officinalis L. Augment the Efficacy of a Rituximab-Immunotoxin. Planta Medica, 2016, 82, 1525-1531.	0.7	10
16	Ribosome-Inactivating Proteins. , 2016, , 4083-4087.		0
17	Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacology and Immunotoxicology, 2015, 37, 42-55.	1.1	22
18	Electrophoretic mobility as a tool to separate immune adjuvant saponins from Quillaja saponaria Molina. International Journal of Pharmaceutics, 2015, 487, 39-48.	2.6	7

#	Article	IF	CITATIONS
19	Combinatorial approach to increase efficacy of Cetuximab, Panitumumab and Trastuzumab by dianthin conjugation and co-application of SO1861. Biochemical Pharmacology, 2015, 97, 247-255.	2.0	19
20	Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers: A Lethal Cocktail with Tumor Specific Efficacy. Current Pharmaceutical Design, 2014, 20, 6584-6643.	0.9	86
21	Dianthin-EGF is an effective tumor targeted toxin in combination with saponins in a xenograft model for colon carcinoma. Future Oncology, 2014, 10, 2161-2175.	1.1	24
22	Preclinical Studies of Saponins for Tumor Therapy. , 2014, , 272-302.		6
23	Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics. Toxins, 2014, 6, 1644-1666.	1.5	7
24	High-speed countercurrent chromatographic recovery and off-line electrospray ionization mass spectrometry profiling of bisdesmodic saponins from Saponaria officinalis possessing synergistic toxicity enhancing properties on targeted antitumor toxins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 955-956, 1-9.	1.2	13
25	Ribosome-Inactivating Proteins. , 2014, , 1-5.		0
26	Saporin. , 2014, , 4128-4131.		0
27	Immunotoxins. , 2014, , 1-4.		0
28	Macromolecular interactions of triterpenoids and targeted toxins: Role of saponins charge. International Journal of Biological Macromolecules, 2013, 61, 285-294.	3.6	15
29	Targeted tumor therapy by epidermal growth factor appended toxin and purified saponin: An evaluation of toxicity and therapeutic potential in syngeneic tumor bearing mice. Molecular Oncology, 2013, 7, 475-483.	2.1	30
30	Modified Trastuzumab and Cetuximab Mediate Efficient Toxin Delivery While Retaining Antibody-Dependent Cell-Mediated Cytotoxicity in Target Cells. Molecular Pharmaceutics, 2013, 10, 4347-4357.	2.3	21
31	Small structural differences of targeted anti-tumor toxins result in strong variation of protein expression. Protein Expression and Purification, 2013, 91, 54-60.	0.6	12
32	Real-time analysis of membrane permeabilizing effects of oleanane saponins. Bioorganic and Medicinal Chemistry, 2013, 21, 2387-2395.	1.4	46
33	Diving through Membranes: Molecular Cunning to Enforce the Endosomal Escape of Antibody-Targeted Anti-Tumor Toxins. Antibodies, 2013, 2, 209-235.	1.2	21
34	The transferrin receptorâ€1 membrane stub undergoes intramembrane proteolysis by signal peptide peptidaseâ€like 2b. FEBS Journal, 2013, 280, 1653-1663.	2.2	20
35	Abstract A83: Combinatorial approach to drastically enhance the monoclonal antibody efficacy in targeted tumor therapy , 2013, , .		0
36	Targeted Tumor Therapy With a Fusion Protein of an Antiangiogenic Human Recombinant scFv and Yeast Cytosine Deaminase. Journal of Immunotherapy, 2012, 35, 570-578.	1.2	4

#	Article	IF	CITATIONS
37	Saponins modulate the intracellular trafficking of protein toxins. Journal of Controlled Release, 2012, 164, 74-86.	4.8	55
38	The toxin component of targeted antiâ€ŧumor toxins determines their efficacy increase by saponins. Molecular Oncology, 2012, 6, 323-332.	2.1	40
39	Rasayana properties of Ayurvedic herbs: Are polysaccharides a major contributor. Carbohydrate Polymers, 2012, 87, 3-15.	5.1	42
40	Real time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosensors and Bioelectronics, 2012, 35, 503-506.	5.3	41
41	The Endocytic Uptake Pathways of Targeted Toxins Are Influenced by Synergistically Acting <i>Gypsophila</i> Saponins. Molecular Pharmaceutics, 2011, 8, 2262-2272.	2.3	14
42	A lysine-free mutant of epidermal growth factor as targeting moiety of a targeted toxin. Life Sciences, 2011, 88, 226-232.	2.0	6
43	Electrophoretic isolation of saponin fractions from Saponinum album and their evaluation in synergistically enhancing the receptorâ€specific cytotoxicity of targeted toxins. Electrophoresis, 2011, 32, 3085-3089.	1.3	15
44	Probing Polymersomeâ€Protein and ell Interactions: Influence of Different Endâ€Groups and Environments. Macromolecular Symposia, 2011, 309-310, 134-140.	0.4	1
45	Abstract 767:Gypsophilasaponins significantly augment the cytotoxicity of saporin-based anti-CD19, -CD22, -CD38 and -CD71 immunotoxins in human leukemia and lymphoma. , 2011, , .		0
46	Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells. International Journal of Cancer, 2010, 127, 1453-1461.	2.3	39
47	Creation and characterization of a xenograft model for human cervical cancer. Gynecologic Oncology, 2010, 118, 76-80.	0.6	18
48	Corrigendum to "Creation and characterization of a xenograft model for human cervical cancer― [Gynecologic Oncology 118 (2010) 76–80]. Gynecologic Oncology, 2010, 119, 604.	0.6	0
49	Expression of interleukin 15 in primary adult acute lymphoblastic leukemia. Cancer, 2010, 116, 387-392.	2.0	26
50	A convenient method for saponin isolation in tumour therapy. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 713-718.	1.2	34
51	The distribution of saponins <i>in vivo</i> affects their synergy with chimeric toxins against tumours expressing human epidermal growth factor receptors in mice. British Journal of Pharmacology, 2010, 159, 345-352.	2.7	17
52	Targeted Enzyme Prodrug Therapies. Mini-Reviews in Medicinal Chemistry, 2010, 10, 887-904.	1.1	81
53	Biocompatible Protein Nanocontainers for Controlled Drugs Release. ACS Nano, 2010, 4, 2838-2844.	7.3	68
54	Abstract 5624: Saponins fromGypsophila paniculata Lsignificantly potentiate the immunospecific cytotoxic activity of anti-CD19 and CD38 saporin-based immunotoxins for a human lymphoma cell line. , 2010, , .		0

#	Article	IF	CITATIONS
55	Saponins as Tool for Improved Targeted Tumor Therapies. Current Drug Targets, 2009, 10, 140-151.	1.0	72
56	Targeted Tumor Therapies at a Glance. Current Drug Targets, 2009, 10, 89-93.	1.0	37
57	A Simple Method for Isolation of <i>Gypsophila</i> Saponins for the Combined Application of Targeted Toxins and Saponins in Tumor Therapy. Planta Medica, 2009, 75, 1421-1422.	0.7	15
58	Enhancement of saporin cytotoxicity by Gypsophila saponins—More than stimulation of endocytosis. Chemico-Biological Interactions, 2009, 181, 424-429.	1.7	18
59	Substantial changes of cellular iron homeostasis during megakaryocytic differentiation of K562 cells. Development Growth and Differentiation, 2009, 51, 555-565.	0.6	4
60	Inhibition of Tumor Growth by Targeted Toxins in Mice is Dramatically Improved by Saponinum Album in a Synergistic Way. Journal of Immunotherapy, 2009, 32, 713-725.	1.2	41
61	Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants. Bioprocess and Biosystems Engineering, 2008, 31, 559-568.	1.7	11
62	Soapwort saponins trigger clathrin-mediated endocytosis of saporin, a type I ribosome-inactivating protein. Chemico-Biological Interactions, 2008, 176, 204-211.	1.7	22
63	Pyruvate kinase isoenzyme M2 is not of diagnostic relevance as a marker for oral cancer. Journal of Cranio-Maxillo-Facial Surgery, 2008, 36, 89-94.	0.7	7
64	Chimeric toxins inhibit growth of primary oral squamous cell carcinoma cells. Cancer Biology and Therapy, 2008, 7, 237-242.	1.5	16
65	Enhancement of Saporin Toxicity Against U937 Cells byGypsophilaSaponins. Journal of Immunotoxicology, 2008, 5, 287-292.	0.9	16
66	Saponins in Tumor Therapy. Mini-Reviews in Medicinal Chemistry, 2008, 8, 575-584.	1.1	81
67	Small Cleavable Adapters Enhance the Specific Cytotoxicity of a Humanized Immunotoxin Directed Against CD64-positive Cells. Journal of Immunotherapy, 2008, 31, 370-376.	1.2	50
68	A33scFv Green fluorescent protein, a recombinant single-chain fusion protein for tumor targeting. Protein Engineering, Design and Selection, 2007, 20, 583-590.	1.0	16
69	Patents on Immunotoxins and Chimeric Toxins for the Treatment of Cancer. Recent Patents on Drug Delivery and Formulation, 2007, 1, 105-115.	2.1	4
70	Quantification of Diphtheria Toxin–Mediated ADP-Ribosylation in a Solid-Phase Assay. Clinical Chemistry, 2007, 53, 1676-1683.	1.5	13
71	A cleavable molecular adapter reduces side effects and concomitantly enhances efficacy in tumor treatment by targeted toxins in mice. Journal of Controlled Release, 2007, 117, 342-350.	4.8	40
72	Enhancement of cytotoxicity of lectins by Saponinum album. Toxicon, 2006, 47, 330-335.	0.8	35

#	Article	IF	CITATIONS
73	The Saponin-Mediated Enhanced Uptake of Targeted Saporin-Based Drugs is Strongly Dependent on the Saponin Structure. Experimental Biology and Medicine, 2006, 231, 412-420.	1.1	47
74	Release of the Soluble Transferrin Receptor Is Directly Regulated by Binding of Its Ligand Ferritransferrin. Journal of Biological Chemistry, 2006, 281, 3297-3304.	1.6	18
75	Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. Journal of Controlled Release, 2005, 106, 123-137.	4.8	61
76	Influence of protein transduction domains on target-specific chimeric proteins. Biochemical and Biophysical Research Communications, 2005, 337, 602-609.	1.0	10
77	A Closer Look at Protein Transduction Domains as a Tool in Drug Delivery. Current Nanoscience, 2005, 1, 117-124.	0.7	10
78	A cleavable adapter to reduce nonspecific cytotoxicity of recombinant immunotoxins. International Journal of Cancer, 2003, 103, 277-282.	2.3	44
79	Mutational suppression of transferrin receptor shedding can be compensated by distinct metalloproteases acting on alternative sites. FEBS Letters, 2003, 536, 25-29.	1.3	5
80	Shedding of the Transferrin Receptor Is Mediated Constitutively by an Integral Membrane Metalloprotease Sensitive to Tumor Necrosis Factor α Protease Inhibitor-2. Journal of Biological Chemistry, 2002, 277, 38494-38502.	1.6	35
81	Processing of the Human Transferrin Receptor at Distinct Positions within the Stalk Region by Neutrophil Elastase and Cathepsin G. Biological Chemistry, 2002, 383, 1011-20.	1.2	23
82	lodination significantly influences the binding of human transferrin to the transferrin receptor. Biochimica Et Biophysica Acta - General Subjects, 2002, 1570, 19-26.	1.1	16
83	A Colorimetric Assay for the Quantitation of Free Adenine Applied to Determine the Enzymatic Activity of Ribosome-Inactivating Proteins. Analytical Biochemistry, 2002, 302, 114-122.	1.1	95
84	Structural and Functional Stability of the Mature Transferrin Receptor from Human Placenta. Archives of Biochemistry and Biophysics, 2001, 386, 79-88.	1.4	14
85	Determination of Optimal Non-Denaturing Elution Conditions from Affinity Columns by a Solid-Phase Screen. BioTechniques, 2001, 31, 584-596.	0.8	3
86	The result of equilibrium-constant calculations strongly depends on the evaluation method used and on the type of experimental errors. Biochemical Journal, 2001, 359, 411.	1.7	16
87	The result of equilibrium-constant calculations strongly depends on the evaluation method used and on the type of experimental errors. Biochemical Journal, 2001, 359, 411-418.	1.7	21
88	Human transferrin receptor is active and plasma membrane-targeted in yeast. FEMS Microbiology Letters, 1998, 160, 61-67.	0.7	7
89	Structural model of phospholipid-reconstituted human transferrin receptor derived by electron microscopy. Structure, 1998, 6, 1235-1243.	1.6	56
90	Direct calibration ELISA: a rapid method for the simplified determination of association constants of unlabeled biological molecules. Journal of Immunological Methods, 1995, 188, 197-208.	0.6	24

#	ARTICLE	IF	CITATIONS
91	Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei Journal of Cell Biology, 1995, 131, 1173-1182.	2.3	154
92	Functional Reconstitution of the Human Placental Transferrin Receptor into Phospholipid Bilayers Leads to Long Tubular Structures Proceeding from the Vesicle Surface. Biochemistry, 1995, 34, 6196-6207.	1.2	25
93	Enzymatic Modeling of the Oligosaccharide Chains of Glycoproteins Immobilized onto Polystyrene Surfaces. Analytical Biochemistry, 1993, 214, 195-204.	1.1	8