List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1990139/publications.pdf Version: 2024-02-01

		8159	13727
336	20,393	76	129
papers	citations	h-index	g-index
351	351	351	19184
all docs	docs citations	times ranked	citing authors

FENC DINC

#	Article	IF	CITATIONS
1	Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510, 522-524.	13.7	677
2	Mechanical Exfoliation and Characterization of Single―and Few‣ayer Nanosheets of WSe ₂ , TaS ₂ , and TaSe ₂ . Small, 2013, 9, 1974-1981.	5.2	544
3	Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nature Materials, 2016, 15, 43-47.	13.3	515
4	Controlled nanocutting of graphene. Nano Research, 2008, 1, 116-122.	5.8	472
5	Synchronous immobilization and conversion of polysulfides on a VO ₂ –VN binary host targeting high sulfur load Li–S batteries. Energy and Environmental Science, 2018, 11, 2620-2630.	15.6	465
6	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62, 1074-1080.	4.3	454
7	Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570, 91-95.	13.7	422
8	Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nature Nanotechnology, 2016, 11, 930-935.	15.6	330
9	Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 2017, 543, 234-238.	13.7	317
10	Graphene Nucleation on Transition Metal Surface: Structure Transformation and Role of the Metal Step Edge. Journal of the American Chemical Society, 2011, 133, 5009-5015.	6.6	315
11	Seamless Stitching of Graphene Domains on Polished Copper (111) Foil. Advanced Materials, 2015, 27, 1376-1382.	11.1	314
12	Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nature Communications, 2015, 6, 6160.	5.8	310
13	Dislocation theory of chirality-controlled nanotube growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2506-2509.	3.3	297
14	Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018, 17, 535-542.	13.3	286
15	The Importance of Strong Carbonâ^'Metal Adhesion for Catalytic Nucleation of Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 463-468.	4.5	269
16	Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface. Journal of the American Chemical Society, 2014, 136, 3040-3047.	6.6	234
17	In situ observation of graphene sublimation and multi-layer edge reconstructions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10103-10108.	3.3	232
18	Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20386-20391.	3.3	213

#	Article	IF	CITATIONS
19	Nucleation and Growth of Single-Walled Carbon Nanotubes:  A Molecular Dynamics Study. Journal of Physical Chemistry B, 2004, 108, 17369-17377.	1.2	209
20	Thin Film Fieldâ€Effect Phototransistors from Bandgapâ€Tunable, Solutionâ€Processed, Few‣ayer Reduced Graphene Oxide Films. Advanced Materials, 2010, 22, 4872-4876.	11.1	209
21	Ultralarge elastic deformation of nanoscale diamond. Science, 2018, 360, 300-302.	6.0	208
22	Recent Progress and Challenges in Graphene Nanoribbon Synthesis. ChemPhysChem, 2013, 14, 47-54.	1.0	203
23	Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Science Advances, 2018, 4, eaat6378.	4.7	198
24	In Situ Assembly of 2D Conductive Vanadium Disulfide with Graphene as a Highâ€Sulfur‣oading Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800201.	10.2	188
25	Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nature Nanotechnology, 2020, 15, 59-66.	15.6	184
26	Manageable N-doped Graphene for High Performance Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 2771.	1.6	182
27	Edge Structural Stability and Kinetics of Graphene Chemical Vapor Deposition Growth. ACS Nano, 2012, 6, 3243-3250.	7.3	179
28	Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nature Communications, 2015, 6, 6499.	5.8	173
29	Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Research, 2015, 8, 3164-3176.	5.8	171
30	Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nature Nanotechnology, 2022, 17, 33-38.	15.6	171
31	Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. Journal of Chemical Physics, 2004, 121, 2775.	1.2	170
32	Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence. Journal of Physical Chemistry C, 2011, 115, 3236-3242.	1.5	167
33	Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy, 2015, 13, 77-91.	8.2	164
34	Clustering of Sc on SWNT and Reduction of Hydrogen Uptake: <i>Ab-Initio</i> All-Electron Calculations. Journal of Physical Chemistry C, 2007, 111, 17977-17980.	1.5	159
35	Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science, 2018, 362, 1021-1025.	6.0	158
36	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	7.3	157

#	Article	IF	CITATIONS
37	Hydrogen storage by spillover on graphene as a phase nucleation process. Physical Review B, 2008, 78, .	1.1	155
38	Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene. Journal of the American Chemical Society, 2012, 134, 2970-2975.	6.6	138
39	Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil. ACS Nano, 2018, 12, 6117-6127.	7.3	132
40	The epitaxy of 2D materials growth. Nature Communications, 2020, 11, 5862.	5.8	130
41	Surface Monocrystallization of Copper Foil for Fast Growth of Large Singleâ€Crystal Graphene under Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974.	11.1	128
42	Transition Metal Surface Passivation Induced Graphene Edge Reconstruction. Journal of the American Chemical Society, 2012, 134, 6204-6209.	6.6	127
43	Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study. Physical Review B, 2004, 70, .	1.1	121
44	Facile Synthesis of Wideâ€Bandgap Fluorinated Graphene Semiconductors. Chemistry - A European Journal, 2011, 17, 8896-8903.	1.7	121
45	Pseudoclimb and Dislocation Dynamics in Superplastic Nanotubes. Physical Review Letters, 2007, 98, 075503.	2.9	119
46	Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni(111) Surface. Journal of Physical Chemistry C, 2011, 115, 17695-17703.	1.5	119
47	Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Advanced Materials, 2015, 27, 7839-7846.	11.1	116
48	Seeded growth of large single-crystal copper foils with high-index facets. Nature, 2020, 581, 406-410.	13.7	116
49	Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating. Advanced Materials, 2018, 30, 1702944.	11.1	113
50	Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano, 2013, 7, 6310-6320.	7.3	112
51	Observational Geology of Graphene, at the Nanoscale. ACS Nano, 2011, 5, 1569-1574.	7.3	108
52	How the Orientation of Graphene Is Determined during Chemical Vapor Deposition Growth. Journal of Physical Chemistry Letters, 2012, 3, 2822-2827.	2.1	106
53	In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries. Nano Energy, 2018, 53, 432-439.	8.2	105
54	Molecular Dynamics Simulation of Chemical Vapor Deposition Graphene Growth on Ni (111) Surface. Journal of Physical Chemistry C, 2012, 116, 6097-6102.	1.5	104

#	Article	IF	CITATIONS
55	Efficient Defect Healing in Catalytic Carbon Nanotube Growth. Physical Review Letters, 2012, 108, 245505.	2.9	100
56	In situ edge engineering in two-dimensional transition metal dichalcogenides. Nature Communications, 2018, 9, 2051.	5.8	100
57	How Evaporating Carbon Nanotubes Retain Their Perfection?. Nano Letters, 2007, 7, 681-684.	4.5	99
58	Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature, 2022, 606, 88-93.	13.7	97
59	Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chemical Reviews, 2021, 121, 6321-6372.	23.0	96
60	Modeling the melting of supported clusters. Applied Physics Letters, 2006, 88, 133110.	1.5	95
61	Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Reports on Progress in Physics, 2015, 78, 036501.	8.1	93
62	How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface. Nano Letters, 2016, 16, 3160-3165.	4.5	92
63	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15733-15741.	4.0	92
64	Prediction of Relative Permeability of Unsaturated Porous Media Based on Fractal Theory and Monte Carlo Simulation. Energy & Fuels, 2012, 26, 6971-6978.	2.5	91
65	The edges of graphene. Nanoscale, 2013, 5, 2556.	2.8	91
66	Formation and Healing of Vacancies in Graphene Chemical Vapor Deposition (CVD) Growth. Journal of the American Chemical Society, 2013, 135, 4476-4482.	6.6	91
67	Kinetics of Graphene and 2D Materials Growth. Advanced Materials, 2019, 31, e1801583.	11.1	91
68	What are the active carbon species during graphene chemical vapor deposition growth?. Nanoscale, 2015, 7, 1627-1634.	2.8	89
69	Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1471-1476.	0.9	88
70	Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation. Physical Review Letters, 2007, 99, 175503.	2.9	87
71	Graphitic Encapsulation of Catalyst Particles in Carbon Nanotube Production. Journal of Physical Chemistry B, 2006, 110, 7666-7670.	1.2	84
72	Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end. Physical Review B, 2005, 72, .	1.1	83

#	Article	IF	CITATIONS
73	Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nature Chemistry, 2019, 11, 730-736.	6.6	82
74	The role of the catalytic particle temperature gradient for SWNT growth from small particles. Chemical Physics Letters, 2004, 393, 309-313.	1.2	81
75	Twoâ€Dimensional Palladium Diselenide with Strong Inâ€Plane Optical Anisotropy and High Mobility Grown by Chemical Vapor Deposition. Advanced Materials, 2020, 32, e1906238.	11.1	81
76	Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nature Communications, 2016, 7, 13256.	5.8	79
77	Twoâ€Dimensional Layered Heterostructures Synthesized from Core–Shell Nanowires. Angewandte Chemie - International Edition, 2015, 54, 8957-8960.	7.2	78
78	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	4.7	77
79	The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale, 2017, 9, 11584-11589.	2.8	76
80	Thickness Tunable Wedding-Cake-like MoS ₂ Flakes for High-Performance Optoelectronics. ACS Nano, 2019, 13, 3649-3658.	7.3	75
81	Dependence of SWNT growth mechanism on temperature and catalyst particle size: Bulk versus surface diffusion. Carbon, 2005, 43, 2215-2217.	5.4	74
82	Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology, 2011, 22, 185202.	1.3	74
83	A difference-fractal model for the permeability of fibrous porous media. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 1201-1204.	0.9	71
84	Mechanically Robust Tri-Wing Graphene Nanoribbons with Tunable Electronic and Magnetic Properties. Nano Letters, 2010, 10, 494-498.	4.5	71
85	Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions. Nanoscale, 2013, 5, 788-795.	2.8	69
86	Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition. Nano Letters, 2016, 16, 6109-6116.	4.5	69
87	Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites. ACS Nano, 2013, 7, 7287-7294.	7.3	68
88	Hydraulic permeability of fibrous porous media. International Journal of Heat and Mass Transfer, 2011, 54, 4009-4018.	2.5	67
89	A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells. Electrochimica Acta, 2014, 134, 222-231.	2.6	65
90	Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers. Journal of the American Chemical Society, 2017, 139, 482-491.	6.6	65

#	Article	IF	CITATIONS
91	Nanotube-derived carbon foam for hydrogen sorption. Journal of Chemical Physics, 2007, 127, 164703.	1.2	64
92	Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Science Advances, 2021, 7, .	4.7	64
93	Edge-Catalyst Wetting and Orientation Control of Graphene Growth by Chemical Vapor Deposition Growth. Journal of Physical Chemistry Letters, 2014, 5, 3093-3099.	2.1	63
94	Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nature Materials, 2023, 22, 450-458.	13.3	62
95	Challenges in hydrogen adsorptions: from physisorption to chemisorption. Frontiers of Physics, 2011, 6, 142-150.	2.4	61
96	Transitionâ€Metalâ€Catalyzed Unzipping of Singleâ€Walled Carbon Nanotubes into Narrow Graphene Nanoribbons at Low Temperature. Angewandte Chemie - International Edition, 2011, 50, 8041-8045.	7.2	61
97	Orientationâ€Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil. Advanced Materials, 2018, 30, 1706504.	11.1	60
98	Nanotube nucleation versus carbon-catalyst adhesion–Probed by molecular dynamics simulations. Journal of Chemical Physics, 2009, 131, 224501.	1.2	59
99	Strainâ€Induced Orientationâ€Selective Cutting of Graphene into Graphene Nanoribbons on Oxidation. Angewandte Chemie - International Edition, 2012, 51, 1161-1164.	7.2	59
100	Growth of Close-Packed Semiconducting Single-Walled Carbon Nanotube Arrays Using Oxygen-Deficient TiO ₂ Nanoparticles as Catalysts. Nano Letters, 2015, 15, 403-409.	4.5	59
101	Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Science Advances, 2016, 2, e1501729.	4.7	59
102	Energetics and kinetics of phase transition between a 2H and a 1T MoS ₂ monolayer—a theoretical study. Nanoscale, 2017, 9, 2301-2309.	2.8	59
103	Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering. Nanoscale, 2019, 11, 4248-4257.	2.8	59
104	An analytical model for gas diffusion though nanoscale and microscale fibrous media. Microfluidics and Nanofluidics, 2014, 16, 381-389.	1.0	57
105	Interaction between graphene layers and the mechanisms of graphite's superlubricity and self-retraction. Nanoscale, 2013, 5, 6736.	2.8	53
106	Selfâ€Assembly of Carbon Atoms on Transition Metal Surfaces—Chemical Vapor Deposition Growth Mechanism of Graphene. Advanced Materials, 2014, 26, 5488-5495.	11.1	52
107	What Drives Metal-Surface Step Bunching in Graphene Chemical Vapor Deposition?. Physical Review Letters, 2018, 120, 246101.	2.9	52
108	The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN's chemical vapor deposition (CVD) growth. Physical Chemistry Chemical Physics, 2015, 17, 29327-29334.	1.3	51

#	Article	IF	CITATIONS
109	Precise Identification of the Active Phase of Cobalt Catalyst for Carbon Nanotube Growth by <i>In Situ</i> Transmission Electron Microscopy. ACS Nano, 2020, 14, 16823-16831.	7.3	51
110	Low-Temperature Single-Wall Carbon Nanotubes Synthesis: Feedstock Decomposition Limited Growth. Journal of the American Chemical Society, 2008, 130, 11840-11841.	6.6	50
111	Unfolding the Fullerene: Nanotubes, Graphene and Polyâ€Elemental Varieties by Simulations. Advanced Materials, 2012, 24, 4956-4976.	11.1	50
112	Diverse Atomically Sharp Interfaces and Linear Dichroism of 1T' ReS ₂ â€ReSe ₂ Lateral p–n Heterojunctions. Advanced Functional Materials, 2018, 28, 1804696.	7.8	50
113	Heterodyned fifth-order two-dimensional IR spectroscopy: Third-quantum states and polarization selectivity. Journal of Chemical Physics, 2005, 123, 094502.	1.2	48
114	Upright Standing Graphene Formation on Substrates. Journal of the American Chemical Society, 2011, 133, 16072-16079.	6.6	47
115	Etching of two-dimensional materials. Materials Today, 2021, 42, 192-213.	8.3	47
116	Structural transition of Si clusters and their thermodynamics. Chemical Physics Letters, 2001, 341, 529-534.	1.2	46
117	Anomalous twin boundaries in two dimensional materials. Nature Communications, 2018, 9, 3597.	5.8	46
118	Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition. Nature Communications, 2013, 4, 2205.	5.8	45
119	Nanoassembly Growth Model for Subdomain and Grain Boundary Formation in 1T′ Layered ReS ₂ . Advanced Functional Materials, 2019, 29, 1906385.	7.8	45
120	Molecular dynamics study of the surface melting of iron clusters. European Physical Journal D, 2005, 34, 275-277.	0.6	44
121	Atomistic simulation of the growth of defect-free carbon nanotubes. Chemical Science, 2015, 6, 4704-4711.	3.7	44
122	A Catalytic Etching-Wetting-Dewetting Mechanism in the Formation of Hollow Graphitic Carbon Fiber. CheM, 2017, 2, 299-310.	5.8	44
123	The importance of supersaturated carbon concentration and its distribution in catalytic particles for single-walled carbon nanotube nucleation. Nanotechnology, 2006, 17, 543-548.	1.3	43
124	Precise Determination of the Threshold Diameter for a Single-Walled Carbon Nanotube To Collapse. ACS Nano, 2014, 8, 9657-9663.	7.3	43
125	Raman Spectral Band Oscillations in Large Graphene Bubbles. Physical Review Letters, 2018, 120, 186104.	2.9	43
126	Dynamic ripples in single layer graphene. Applied Physics Letters, 2011, 98, .	1.5	42

#	Article	IF	CITATIONS
127	Growth kinetics of single-walled carbon nanotubes with a (2 <i>n</i> , <i>n</i>) chirality selection. Science Advances, 2019, 5, eaav9668.	4.7	42
128	Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nature Communications, 2022, 13, 1007.	5.8	42
129	The edge termination controlled kinetics in graphene chemical vapor deposition growth. Chemical Science, 2014, 5, 4639-4645.	3.7	41
130	The reconstructed edges of the hexagonal BN. Nanoscale, 2015, 7, 9723-9730.	2.8	41
131	The Great Reduction of a Carbon Nanotube's Mechanical Performance by a Few Topological Defects. ACS Nano, 2016, 10, 6410-6415.	7.3	41
132	The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth. Chemical Science, 2018, 9, 3056-3061.	3.7	41
133	Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X–M–Y (X, Y = S, Se, Te;) Tj ET	[Qq1 1 0.7 2.8	784314 rgBT 40
134	Statistical analysis of nighttime mediumâ€scale traveling ionospheric disturbances using airglow images and GPS observations over central China. Journal of Geophysical Research: Space Physics, 2016, 121, 8887-8899.	0.8	40
135	The Way towards Ultrafast Growth of Singleâ€Crystal Graphene on Copper. Advanced Science, 2017, 4, 1700087.	5.6	40
136	Calculating carbon nanotube–catalyst adhesion strengths. Physical Review B, 2007, 75, .	1.1	39
137	Dislocation Dynamics in Multiwalled Carbon Nanotubes at High Temperatures. Physical Review Letters, 2008, 100, 035503.	2.9	39
138	Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Computational Materials Science, 2006, 35, 243-246.	1.4	38
139	Sequential Electrochemical Unzipping of Single-Walled Carbon Nanotubes to Graphene Ribbons Revealed by <i>in Situ</i> Raman Spectroscopy and Imaging. ACS Nano, 2014, 8, 234-242.	7.3	38
140	Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon–metal potential. Nanoscale, 2016, 8, 921-929.	2.8	38
141	Controllable Growth of (n, n â^'1) Family of Semiconducting Carbon Nanotubes. CheM, 2019, 5, 1182-1193.	5.8	38
142	Computational Studies of Catalytic Particles for Carbon Nanotube Growth. Journal of Computational and Theoretical Nanoscience, 2009, 6, 1-15.	0.4	37
143	The Structure and Stability of Magic Carbon Clusters Observed in Graphene Chemical Vapor Deposition Growth on Ru(0001) and Rh(111) Surfaces. Angewandte Chemie - International Edition, 2014, 53, 14031-14035.	7.2	37
144	Size dependent melting mechanisms of iron nanoclusters. Chemical Physics, 2007, 333, 57-62.	0.9	36

#	Article	IF	CITATIONS
145	Interwall Friction and Sliding Behavior of Centimeters Long Double-Walled Carbon Nanotubes. Nano Letters, 2016, 16, 1367-1374.	4.5	36
146	Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources, 2013, 225, 179-186.	4.0	35
147	Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth. Chemical Science, 2017, 8, 2209-2214.	3.7	35
148	The Coalescence Behavior of Two-Dimensional Materials Revealed by Multiscale <i>In Situ</i> Imaging during Chemical Vapor Deposition Growth. ACS Nano, 2020, 14, 1902-1918.	7.3	35
149	Selective growth of two-dimensional phosphorene on catalyst surface. Nanoscale, 2018, 10, 2255-2259.	2.8	34
150	Chirality-controlled synthesis of single-walled carbon nanotubes—From mechanistic studies toward experimental realization. Materials Today, 2018, 21, 845-860.	8.3	34
151	Threshold Barrier of Carbon Nanotube Growth. Physical Review Letters, 2011, 107, 156101.	2.9	33
152	Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting. Journal of Physical Chemistry Letters, 2014, 5, 1192-1197.	2.1	33
153	Thermal properties of medium-sized Ge clusters. Solid State Communications, 2001, 117, 593-598.	0.9	32
154	Fluorination induced half metallicity in two-dimensional few zinc oxide layers. Journal of Chemical Physics, 2010, 132, 204703.	1.2	32
155	Transverse permeability determination of dual-scale fibrous materials. International Journal of Heat and Mass Transfer, 2013, 58, 532-539.	2.5	32
156	Controlling the orientations of h-BN during growth on transition metals by chemical vapor deposition. Nanoscale, 2017, 9, 3561-3567.	2.8	32
157	Camphorâ€Enabled Transfer and Mechanical Testing of Centimeterâ€Scale Ultrathin Films. Advanced Materials, 2018, 30, e1800888.	11.1	32
158	Ultrafast Catalyst-Free Graphene Growth on Glass Assisted by Local Fluorine Supply. ACS Nano, 2019, 13, 10272-10278.	7.3	32
159	Thermal behavior of Cu–Co bimetallic clusters. Solid State Communications, 2001, 119, 13-18.	0.9	31
160	The favourable large misorientation angle grain boundaries in graphene. Nanoscale, 2015, 7, 20082-20088.	2.8	31
161	Passively correcting phase drift in two-dimensional infrared spectroscopy. Optics Letters, 2006, 31, 2918.	1.7	29
162	Formation mechanism of peapod-derived double-walled carbon nanotubes. Physical Review B, 2010, 82, .	1.1	29

#	Article	IF	CITATIONS
163	Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate. Npj Computational Materials, 2020, 6, .	3.5	29
164	Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes. Carbon, 2018, 128, 249-256.	5.4	28
165	Molecular dynamics study of bamboo-like carbon nanotube nucleation. Journal of Electronic Materials, 2006, 35, 207-210.	1.0	27
166	Tunable carbon nanotube ionic polymer actuators that are operable in dry conditions. Sensors and Actuators B: Chemical, 2012, 162, 76-81.	4.0	27
167	Effective permeability of gas diffusion layer in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 10519-10526.	3.8	27
168	GPS detection of the ionospheric disturbances over China due to impacts of Typhoons Rammasum and Matmo. Journal of Geophysical Research: Space Physics, 2017, 122, 1055-1063.	0.8	27
169	Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001483.	7.8	27
170	Realizing the Intrinsic Anisotropic Growth of 1T′ ReS ₂ on Selected Au(101) Substrate toward Large cale Single Crystal Fabrication. Advanced Functional Materials, 2021, 31, 2102138.	7.8	27
171	Why Carbon Nanotubes Grow. Journal of the American Chemical Society, 2022, 144, 5606-5613.	6.6	27
172	Formation of carbyne and graphyne on transition metal surfaces. Nanoscale, 2014, 6, 12727-12731.	2.8	26
173	Impurity-induced formation of bilayered graphene on copper by chemical vapor deposition. Nano Research, 2016, 9, 2803-2810.	5.8	26
174	In situ epitaxial engineering of graphene and h-BN lateral heterostructure with a tunable morphology comprising h-BN domains. NPG Asia Materials, 2019, 11, .	3.8	26
175	Borophene with Large Holes. Journal of Physical Chemistry Letters, 2020, 11, 6235-6241.	2.1	26
176	A comprehensive assessment of empirical potentials for carbon materials. APL Materials, 2021, 9, .	2.2	26
177	Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer. Journal of Crystal Growth, 2015, 425, 268-273.	0.7	25
178	How Low Nucleation Density of Graphene on CuNi Alloy is Achieved. Advanced Science, 2018, 5, 1700961.	5.6	25
179	Formation of Twinned Graphene Polycrystals. Angewandte Chemie - International Edition, 2019, 58, 7723-7727.	7.2	25
180	Dynamic State and Active Structure of Ni–Co Catalyst in Carbon Nanofiber Growth Revealed by <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2021, 15, 17895-17906.	7.3	25

#	Article	IF	CITATIONS
181	Mechanism of Metal Catalyzed Healing of Large Structural Defects in Graphene. Journal of Physical Chemistry C, 2014, 118, 720-724.	1.5	24
182	Global ionospheric electron density estimation based on multisource TEC data assimilation. GPS Solutions, 2017, 21, 1125-1137.	2.2	24
183	Isomerization of sp ² â€hybridized carbon nanomaterials: structural transformation and topological defects of fullerene, carbon nanotube, and graphene. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1283.	6.2	24
184	Vacancy-hole and vacancy-tube migration in multiwall carbon nanotubes. Physical Review B, 2008, 78, .	1.1	23
185	The Mechanism of Graphene Vapor–Solid Growth on Insulating Substrates. ACS Nano, 2021, 15, 7399-7408.	7.3	23
186	Selfâ€Templated Growth of Carbonâ€Nanotube Walls at High Temperatures. Small, 2007, 3, 1735-1739.	5.2	22
187	How a Zigzag Carbon Nanotube Grows. Angewandte Chemie - International Edition, 2015, 54, 5924-5928.	7.2	22
188	Formation of Graphene Grain Boundaries on Cu(100) Surface and a Route Towards Their Elimination in Chemical Vapor Deposition Growth. Scientific Reports, 2014, 4, 6541.	1.6	21
189	In situ atomic-scale observation of monolayer graphene growth from SiC. Nano Research, 2018, 11, 2809-2820.	5.8	21
190	How a Solid Catalyst Determines the Chirality of the Single-Wall Carbon Nanotube Grown on It. Journal of Physical Chemistry Letters, 2019, 10, 735-741.	2.1	21
191	The geometry of hexagonal boron nitride clusters in the initial stages of chemical vapor deposition growth on a Cu(111) surface. Nanoscale, 2019, 11, 13366-13376.	2.8	21
192	Environment-dependent edge reconstruction of transition metal dichalcogenides: a global search. Materials Today Advances, 2020, 8, 100079.	2.5	21
193	Grain boundaries in chemical-vapor-deposited atomically thin hexagonal boron nitride. Physical Review Materials, 2019, 3, .	0.9	21
194	Vacancy inter-layer migration in multi-layered graphene. Nanoscale, 2014, 6, 5729-5734.	2.8	20
195	Evolution of domains and grain boundaries in graphene: a kinetic Monte Carlo simulation. Physical Chemistry Chemical Physics, 2016, 18, 2932-2939.	1.3	20
196	Advance in Closeâ€Edged Graphene Nanoribbon: Property Investigation and Structure Fabrication. Small, 2019, 15, e1804473.	5.2	20
197	The complementary graphene growth and etching revealed by large-scale kinetic Monte Carlo simulation. Npj Computational Materials, 2021, 7, .	3.5	20
198	Insights into the Mechanism for Vertical Graphene Growth by Plasma-Enhanced Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2022, 14, 7152-7160.	4.0	20

#	Article	IF	CITATIONS
199	Size-Dependent Chemomechanical Failure of Sulfide Solid Electrolyte Particles during Electrochemical Reaction with Lithium. Nano Letters, 2022, 22, 411-418.	4.5	20
200	Achievements and Challenges of Graphene Chemical Vapor Deposition Growth. Advanced Functional Materials, 2022, 32, .	7.8	20
201	Local cluster formation in a cobalt melt during the cooling process. Physical Review B, 2001, 65, .	1.1	19
202	Friction and adhesion properties of vertically aligned multi-walled carbon nanotube arrays and fluoro-nanodiamond films. Carbon, 2008, 46, 1294-1301.	5.4	19
203	Strain-induced metal-semimetal transition of BeB ₂ monolayer. RSC Advances, 2015, 5, 11392-11396.	1.7	19
204	Mechanically Assisted Selfâ€Healing of Ultrathin Gold Nanowires. Small, 2018, 14, 1704085.	5.2	19
205	Two Day Wave Traveling Westward With Wave Number 1 During the Sudden Stratospheric Warming in January 2017. Journal of Geophysical Research: Space Physics, 2018, 123, 3005-3013.	0.8	19
206	Theoretical and Experimental Investigations on the Growth of SnS van der Waals Epitaxies on Graphene Buffer Layer. Crystal Growth and Design, 2013, 13, 4755-4759.	1.4	18
207	The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate. Nanoscale, 2019, 11, 14339-14353.	2.8	18
208	Highly stable phosphorene isomers based on a buckled honeycomb lattice. Nanoscale, 2019, 11, 7135-7139.	2.8	18
209	Epitaxial Growth of 2D Materials on Highâ€Index Substrate Surfaces. Advanced Functional Materials, 2021, 31, 2100503.	7.8	18
210	Understanding Single-Walled Carbon Nanotube Growth for Chirality Controllable Synthesis. Accounts of Materials Research, 2021, 2, 828-841.	5.9	18
211	Molecular dynamics study of icosahedral ordering and defect in the Ni3Al liquid and glasses. Chemical Physics Letters, 2002, 354, 466-473.	1.2	17
212	Atomistic Simulations of Catalyzed Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2006, 6, 1211-1224.	0.9	17
213	Ionospheric response following the <i>M</i> _{<i>w</i>} 7.8 Gorkha earthquake on 25 April 2015. Journal of Geophysical Research: Space Physics, 2017, 122, 6495-6507.	0.8	17
214	Contact-Induced Phase Separation of Alloy Catalyst to Promote Carbon Nanotube Growth. Physical Review Letters, 2019, 123, 256101.	2.9	17
215	Graphitization with Suppressed Carbon Loss for High-Quality Reduced Graphene Oxide. ACS Nano, 2021, 15, 11655-11666.	7.3	17
216	The Wetâ€Oxidation of a Cu(111) Foil Coated by Single Crystal Graphene. Advanced Materials, 2021, 33, e2102697.	11.1	17

#	Article	IF	CITATIONS
217	Chemical Etching of Screw Dislocated Transition Metal Dichalcogenides. Nano Letters, 2021, 21, 7815-7822.	4.5	17
218	Chloroformâ€Assisted Rapid Growth of Vertical Graphene Array and Its Application in Thermal Interface Materials. Advanced Science, 2022, 9, e2200737.	5.6	17
219	Molecular dynamics computation of clusters in liquid Fe–Al alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 325-332.	0.9	16
220	Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence. Nanoscale, 2012, 4, 130-136.	2.8	16
221	Mechanism of boron and nitrogen in situ doping during graphene chemical vapor deposition growth. Carbon, 2016, 98, 633-637.	5.4	16
222	Sizeâ€Dependent Phase Transformation of Noble Metal Nanomaterials. Small, 2019, 15, e1903253.	5.2	16
223	Medium‣cale Traveling Ionospheric Disturbances Induced by Typhoon Chanâ€ <scp>h</scp> om Over China. Journal of Geophysical Research: Space Physics, 2019, 124, 2223-2237.	0.8	16
224	Is there chiral correlation between graphitic layers in double-wall carbon nanotubes?. Carbon, 2019, 144, 147-151.	5.4	16
225	Local Carbon Concentration Determines the Graphene Edge Structure. Journal of Physical Chemistry Letters, 2020, 11, 3451-3457.	2.1	16
226	Structural studies of clusters in melt of FeAl compound. Journal of Chemical Physics, 2001, 114, 6413-6416.	1.2	15
227	Templated growth of graphenic materials. Nanotechnology, 2009, 20, 245607.	1.3	15
228	A structural stability diagram of multiple vacancies and defect self-healing in graphene. Nanoscale, 2012, 4, 7489.	2.8	15
229	Energy-Driven Kinetic Monte Carlo Method and Its Application in Fullerene Coalescence. Journal of Physical Chemistry Letters, 2014, 5, 2922-2926.	2.1	15
230	Formation Mechanism, Growth Kinetics, and Stability Limits of Graphene Adlayers in Metal atalyzed CVD Growth. Advanced Materials Interfaces, 2018, 5, 1800255.	1.9	15
231	Double-Spiral Hexagonal Boron Nitride and Shear Strained Coalescence Boundary. Nano Letters, 2019, 19, 4229-4236.	4.5	15
232	Morphology Evolution of Graphene during Chemical Vapor Deposition Growth: A Phase-Field Theory Simulation. Journal of Physical Chemistry C, 2019, 123, 9902-9908.	1.5	15
233	Theoretical Study of Chemical Vapor Deposition Synthesis of Graphene and Beyond: Challenges and Perspectives. Journal of Physical Chemistry Letters, 2021, 12, 7942-7963.	2.1	15
234	Elastic deformation and stability in pentagonal nanorods with multiple twin boundaries. Journal of Physics Condensed Matter, 2002, 14, 113-122.	0.7	14

#	Article	IF	CITATIONS
235	High strength composites using interlocking carbon nanotubes in a polyimide matrix. Carbon, 2013, 60, 102-108.	5.4	14
236	Atomistic simulation and the mechanism of graphene amorphization under electron irradiation. Nanoscale, 2014, 6, 2082.	2.8	14
237	First-Principles Phase Diagram of Magic-Sized Carbon Clusters on Ru(0001) and Rh(111) Surfaces. Journal of Physical Chemistry C, 2015, 119, 11086-11093.	1.5	14
238	Self-passivation leads to semiconducting edges of black phosphorene. Nanoscale Horizons, 2021, 6, 148-155.	4.1	14
239	Structure and thermal properties of supported catalyst clusters for single-walled carbon nanotube growth. Applied Surface Science, 2006, 252, 5254-5258.	3.1	13
240	Gold nanotube encapsulation enhanced magnetic properties of transition metal monoatomic chains: An ab initio study. Journal of Chemical Physics, 2009, 130, 064706.	1.2	13
241	How graphene crosses a grain boundary on the catalyst surface during chemical vapour deposition growth. Nanoscale, 2018, 10, 6878-6883.	2.8	13
242	<i>In Situ</i> Atomic-Scale Observation of Surface-Tension-Induced Structural Transformation of Ag-NiP _{<i>x</i> /i>} Core–Shell Nanocrystals. ACS Nano, 2018, 12, 7197-7205.	7.3	13
243	Sub-4 nm Nanodiamonds from Graphene-Oxide and Nitrated Polycyclic Aromatic Hydrocarbons at 423 K. ACS Nano, 2021, 15, 17392-17400.	7.3	13
244	Temperature-dependent selective nucleation of single-walled carbon nanotubes from stabilized catalyst nanoparticles. Chemical Engineering Journal, 2022, 431, 133487.	6.6	13
245	Effect of Metal Impurities on the Tensile Strength of Carbon Nanotubes: A Theoretical Study. Journal of Physical Chemistry C, 2013, 117, 5470-5474.	1.5	12
246	The formation mechanism of multiple vacancies and amorphous graphene under electron irradiation. Nanoscale, 2015, 7, 8315-8320.	2.8	12
247	Catalyst particle size dependent carbon nanotube cloning. Carbon, 2021, 175, 69-76.	5.4	12
248	Reconstructed edges of T phase transition metal dichalcogenides. Materials Today Physics, 2021, 19, 100411.	2.9	12
249	Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates. Nature Communications, 2022, 13, 1773.	5.8	12
250	Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. Advanced Materials, 2022, 34, e2200956.	11.1	12
251	GPS detection of the coseismic ionospheric disturbances following the 12 May 2008 M7.9 Wenchuan earthquake in China. Science China Earth Sciences, 2015, 58, 151-158.	2.3	11
252	The wrinkle formation in graphene on transition metal substrate: a molecular dynamics study. International Journal of Smart and Nano Materials, 2020, 11, 277-287.	2.0	11

#	Article	IF	CITATIONS
253	Mechanism of MoS ₂ Growth on a Au(111) Surface: An Ab Initio Molecular Dynamics Study. Chemistry of Materials, 2021, 33, 3241-3248.	3.2	11
254	Boosting in-plane anisotropy by periodic phase engineering in two-dimensional VO2 single crystals. Fundamental Research, 2022, 2, 456-461.	1.6	11
255	Stability and electronic structure of hydrogen passivated few atomic layer silicon films: A theoretical exploration. Journal of Applied Physics, 2011, 109, 053516.	1.1	10
256	The Study on the Medium-Sized Carbon Islands on Ru(0001) Surface. Journal of Cluster Science, 2015, 26, 347-360.	1.7	10
257	Dynamic modulation of the transport properties of theLaAlO3/SrTiO3interface using uniaxial strain. Physical Review B, 2016, 93, .	1.1	10
258	Thermodynamics and Kinetics of Graphene Growth on Ni(111) and the Origin of Triangular Shaped Graphene Islands. Journal of Physical Chemistry C, 2018, 122, 3334-3340.	1.5	10
259	Modification of the Interlayer Coupling and Chemical Reactivity of Multilayer Graphene through Wrinkle Engineering. Chemistry of Materials, 2021, 33, 2506-2515.	3.2	10
260	Anisotropic Angstrom-Wide Conductive Channels in Black Phosphorus by Top-down Cu Intercalation. Nano Letters, 2021, 21, 6336-6342.	4.5	10
261	Spiral Growth of Adlayer Graphene. Advanced Materials, 2022, 34, e2107587.	11.1	10
262	Hydrogenation of bilayer graphene: A small twist makes a big difference. Nano Research, 2015, 8, 3887-3897.	5.8	9
263	Depletion and Traveling Ionospheric Disturbances Generated by Two Launches of China's Long March 4B Rocket. Journal of Geophysical Research: Space Physics, 2018, 123, 10,319.	0.8	9
264	Structures of Multiple Largeâ€Scale Traveling Ionospheric Disturbances Observed by Dense Global Navigation Satellite System Networks in China. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027032.	0.8	9
265	Coupling Between <i>E</i> Region Quasiâ€Periodic Echoes and <i>F</i> Region Mediumâ€6cale Traveling Ionospheric Disturbances at Low Latitudes. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027720.	0.8	9
266	Lithium Deposition-Induced Fracture of Carbon Nanotubes and Its Implication to Solid-State Batteries. Nano Letters, 2021, 21, 6859-6866.	4.5	9
267	Application of Crystal Growth Theory in Graphene CVD Nucleation and Growth. Acta Chimica Sinica, 2014, 72, 345.	0.5	9
268	Evolution of small nickel cluster during solidification. Solid State Communications, 2001, 120, 41-46.	0.9	8
269	Initial growth of single-walled carbon nanotubes on supported iron clusters: a molecular dynamics study. European Physical Journal D, 2007, 43, 185-189.	0.6	8
270	Epitaxial nucleation of CVD bilayer graphene on copper. Nanoscale, 2016, 8, 20001-20007.	2.8	8

#	Article	IF	CITATIONS
271	The magic-sized carbon clusters on the transition metal surfaces with a four-fold symmetry. Carbon, 2020, 156, 282-286.	5.4	8
272	Controlling Cross Section of Carbon Nanotubes via Selective Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 11753-11757.	1.5	7
273	Mechanisms and theoretical simulations of the catalytic growth of nanocarbons. MRS Bulletin, 2017, 42, 794-801.	1.7	7
274	Charge Transfer during the Dissociation of H ₂ and the Charge State of H Atoms in Liquid Gallium. Journal of Physical Chemistry C, 2019, 123, 26769-26776.	1.5	7
275	Stable AA-Stacked Pt Nanoclusters Supported on Graphene/Ru(0001) and the Selective Catalysis: A Theoretical Study. ACS Applied Nano Materials, 2019, 2, 2921-2925.	2.4	7
276	The alignment-dependent properties and applications of graphene moiré superstructures on the Ru(0001) surface. Nanoscale, 2020, 12, 12831-12839.	2.8	7
277	How Single-Walled Carbon Nanotubes are Transformed into Multiwalled Carbon Nanotubes during Heat Treatment. ACS Omega, 2021, 6, 4074-4079.	1.6	7
278	Latitudinal Variations of Daytime Periodic Ionospheric Disturbances From Beidou GEO TEC Observations Over China. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028809.	0.8	7
279	The stable interfaces between various edges of hBN and step edges of Cu surface in hBN epitaxial growth: a comprehensive theoretical exploration. 2D Materials, 2021, 8, 034004.	2.0	7
280	Growth and Selective Etching of Twinned Graphene on Liquid Copper Surface. Small, 2021, 17, 2103484.	5.2	7
281	Probing Atomicâ€Scale Fracture of Grain Boundaries in Lowâ€symmetry 2D Materials. Small, 2021, 17, e2102739.	5.2	7
282	Stabilities of Isomers of Phosphorus on Transition Metal Substrates. Chemistry of Materials, 2021, 33, 9447-9453.	3.2	7
283	Robust Electronic Properties of Sealed Graphene for Electronic Applications. Journal of Physical Chemistry C, 2012, 116, 8027-8033.	1.5	6
284	Formation of Twinned Graphene Polycrystals. Angewandte Chemie, 2019, 131, 7805-7809.	1.6	6
285	Mechanism of 2D Materials' Seamless Coalescence on a Liquid Substrate. ACS Nano, 2021, 15, 19387-19393	. 7.3	6
286	Impact of Anthropogenic Emission Changes on the Occurrence of Equatorial Plasma Bubbles. Geophysical Research Letters, 2022, 49, .	1.5	6
287	Ionospheric Topside Diffusive Flux and the Formation of Summer Nighttime Ionospheric Electron Density Enhancement Over Millstone Hill. Geophysical Research Letters, 2022, 49, .	1.5	6
288	Multi-stage anisotropic etching of two-dimensional heterostructures. Nano Research, 2022, 15, 4909-4915.	5.8	6

#	Article	IF	CITATIONS
289	Multiple 2D Phase Transformations in Monolayer Transition Metal Chalcogenides. Advanced Materials, 2022, 34, e2200643.	11.1	6
290	<i>In situ</i> imaging the dynamics of sodium metal deposition and stripping. Journal of Materials Chemistry A, 2022, 10, 14875-14883.	5.2	6
291	Mesoscale reverse stick-slip nanofriction behavior of vertically aligned multiwalled carbon nanotube superlattices. Applied Physics Letters, 2008, 92, 203115.	1.5	5
292	Mechanism of alcohol chemical vapor deposition growth of carbon nanotubes: Catalyst oxidation. Carbon, 2022, 191, 1-9.	5.4	5
293	Focused Lunar Imaging Experiment Using the Back Projection Algorithm Based on Sanya Incoherent Scatter Radar. Remote Sensing, 2022, 14, 2048.	1.8	5
294	Monte Carlo simulation of three-dimensional polycrystalline material. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 357, 153-158.	2.6	4
295	Unveiling carbon dimers and their chains as precursor of graphene growth on Ru(0001). Applied Physics Letters, 2016, 109, 131604.	1.5	4
296	How the moiré superstructure determines the formation of highly stable graphene quantum dots on Ru(0001) surface. Nanoscale Horizons, 2019, 4, 625-633.	4.1	4
297	Simulation of the Signal-to-Noise Ratio of Sanya Incoherent Scatter Radar Tristatic System. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 2982-2993.	2.7	4
298	Mechanisms of the epitaxial growth of two-dimensional polycrystals. Npj Computational Materials, 2022, 8, .	3.5	4
299	Formation and stability of large B 6O clusters with icosahedral structure. European Physical Journal D, 2001, 16, 245-248.	0.6	3
300	Comment on "Mechanism for Superelongation of Carbon Nanotubes at High Temperatures― Physical Review Letters, 2009, 103, 039601; author reply 039602.	2.9	3
301	High Temperature Accelerated Stone–Wales Transformation and the Threshold Temperature of IPR-C ₆₀ Formation. Journal of Physical Chemistry A, 2021, 125, 4548-4557.	1.1	3
302	Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	3
303	Interpretation of the Altitudinal Variation in the Martian Ionosphere Longitudinal Waveâ€3 Structure. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
304	Dynamic Tuning of Moiré Superlattice Morphology by Laser Modification. ACS Nano, 2022, 16, 8172-8180.	7.3	3
305	Visualizing the Anomalous Catalysis in Two-Dimensional Confined Space. Nano Letters, 2022, 22, 4661-4668.	4.5	3
306	THE BOND LENGTH DEFORMATION AND THE ELASTIC STRUCTURE IN ICOSAHEDRAL CLUSTERS. International Journal of Modern Physics B, 2001, 15, 1947-1957.	1.0	2

#	Article	IF	CITATIONS
307	The Stability of Icosahedral Cluster and the Range of Interaction Potential. Communications in Theoretical Physics, 2001, 36, 459-462.	1.1	2
308	In-situ Observation of Graphene Sublimation and Edge Reconstructions. Microscopy and Microanalysis, 2009, 15, 1164-1165.	0.2	2
309	The formation and stability of junctions in single-wall carbon nanotubes. Nanotechnology, 2018, 29, 485702.	1.3	2
310	Family of Magicâ€Sized Carbon Clusters on Transition Metal Substrates. Advanced Functional Materials, 2020, 30, 2006671.	7.8	2
311	2D Materials: Twoâ€Dimensional Palladium Diselenide with Strong Inâ€Plane Optical Anisotropy and High Mobility Grown by Chemical Vapor Deposition (Adv. Mater. 19/2020). Advanced Materials, 2020, 32, 2070152.	11.1	2
312	A Detection Performance Analysis of Sanya Incoherent Scatter Radar Tristatic System. Radio Science, 2021, 56, e2020RS007144.	0.8	2
313	Theoretical calculation boosting the chemical vapor deposition growth of graphene film. APL Materials, 2021, 9, 060906.	2.2	2
314	Mechanism of Corrugated Graphene Moiré Superstructures on Transition-Metal Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 56674-56681.	4.0	2
315	Ordering a rhenium catalyst on Ag(001) through molecule-surface step interaction. Communications Chemistry, 2022, 5, .	2.0	2
316	Highâ€Resolution and Accurate Low‣atitude Gridded Electron Density Generation and Evaluation. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	2
317	Stabilization of Black Phosphorene by Edge-Selective Adsorption of C ₆₀ Molecules. Journal of Physical Chemistry C, 2022, 126, 6874-6879.	1.5	2
318	Graphene Growth across the Twin Boundaries of Copper Substrate. Advanced Functional Materials, 2022, 32, .	7.8	2
319	Eastâ€West Difference in the Ionospheric Response of the March 1989 Great Magnetic Storm Throughout East Asian Region. Journal of Geophysical Research: Space Physics, 2019, 124, 9364-9380.	0.8	1
320	Grain Boundaries: Nanoassembly Growth Model for Subdomain and Grain Boundary Formation in 1T′ Layered ReS ₂ (Adv. Funct. Mater. 49/2019). Advanced Functional Materials, 2019, 29, 1970335.	7.8	1
321	Nanopatterned Graphene: Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070209.	7.8	1
322	Structural Evolution of Boron Clusters on Ag(111) Surfaces – From Atomic Chains to Triangular Sheets with Hexagonal Holes. ChemPhysChem, 2021, 22, 894-903.	1.0	1
323	Silica Particleâ€Mediated Growth of Single Crystal Graphene Ribbons on Cu(111) Foil. Small, 2022, , 2202536.	5.2	1
324	MD Simulations of Catalytic Carbon Nanotube Growth: Important Features of the Metal-Carbon Interactions. AIP Conference Proceedings, 2004, , .	0.3	0

#	Article	IF	CITATIONS
325	Theory of screw dislocation and chiral angle controlled carbon nanotube growth. , 2010, , .		Ο
326	Titelbild: Transition-Metal-Catalyzed Unzipping of Single-Walled Carbon Nanotubes into Narrow Graphene Nanoribbons at Low Temperature (Angew. Chem. 35/2011). Angewandte Chemie, 2011, 123, 8103-8103.	1.6	0
327	Cover Picture: Transition-Metal-Catalyzed Unzipping of Single-Walled Carbon Nanotubes into Narrow Graphene Nanoribbons at Low Temperature (Angew. Chem. Int. Ed. 35/2011). Angewandte Chemie - International Edition, 2011, 50, 7955-7955.	7.2	0
328	A multiscale approach to determine binding energy distribution on a strained surface. Nanoscale, 2014, 6, 4857.	2.8	0
329	Rücktitelbild: How a Zigzag Carbon Nanotube Grows (Angew. Chem. 20/2015). Angewandte Chemie, 2015, 127, 6166-6166.	1.6	0
330	Coalescence of the Fullerenes in SWNT with Bend Junction. Key Engineering Materials, 2016, 697, 789-794.	0.4	0
331	Homoepitaxial growth of ZnO nanostructures from bulk ZnO. Journal of Colloid and Interface Science, 2021, 586, 135-141.	5.0	0
332	Self-inhibition effect of metal incorporation in nanoscaled semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	0
333	Growth and Selective Etching of Twinned Graphene on Liquid Copper Surface (Small 40/2021). Small, 2021, 17, .	5.2	0
334	MOLECULAR DYNAMICS STUDY OF IRON CLUSTER COALESCENCE AT SUB-MELTING POINT TEMPERATURES. , 2005, , .		0
335	Small transition-metal dichalcogenide nanostructures down to subnanometer by two-dimensional material origami. Physical Review Materials, 2019, 3, .	0.9	0
336	Shortâ€period concentric traveling ionospheric disturbances excited by the launch of China's Long March 4B rocket detected by 1 Hz GNSS data. Space Weather, 0, , .	1.3	0