

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1989960/publications.pdf

Version: 2024-02-01

YANG

#	Article	IF	CITATIONS
1	Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environmental Pollution, 2022, 292, 118386.	7.5	53
2	Clay-hydrochar composites mitigated CH4 and N2O emissions from paddy soil: A whole rice growth period investigation. Science of the Total Environment, 2021, 780, 146532.	8.0	19
3	Responses of archaeal, bacterial, and functional microbial communities to growth season and nitrogen fertilization in rice fields. Biology and Fertility of Soils, 2020, 56, 81-95.	4.3	31
4	<i>Spartina alterniflora</i> invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh. Journal of Ecology, 2019, 107, 2436-2450.	4.0	40
5	Change of the pathway of methane production with progressing anoxic incubation of paddy soil. Soil Biology and Biochemistry, 2018, 121, 177-184.	8.8	39
6	Response of fermenting bacterial and methanogenic archaeal communities in paddy soil to progressing rice straw degradation. Soil Biology and Biochemistry, 2018, 124, 70-80.	8.8	85
7	Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types. Environmental Microbiology, 2016, 18, 5082-5100.	3.8	41
8	Functional and structural responses of methanogenic microbial communities in Uruguayan soils to intermittent drainage. Soil Biology and Biochemistry, 2015, 89, 238-247.	8.8	21
9	Response of the methanogenic microbial communities in <scp>A</scp> mazonian oxbow lake sediments to desiccation stress. Environmental Microbiology, 2014, 16, 1682-1694.	3.8	60
10	Carbon isotope fractionation during CH4 transport in paddy fields. Science China Earth Sciences, 2014, 57, 1664-1670.	5.2	6
11	Effects of Urea and Controlled Release Urea Fertilizers on Methane Emission from Paddy Fields: A Multi-Year Field Study. Pedosphere, 2014, 24, 662-673.	4.0	29
12	Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation. Plant and Soil, 2013, 371, 473-486.	3.7	48
13	Structure and function of the methanogenic microbial communities in <scp>U</scp> ruguayan soils shifted between pasture and irrigated rice fields. Environmental Microbiology, 2013, 15, 2588-2602.	3.8	51
14	Timing of midseason aeration to reduce CH ₄ and N ₂ O emissions from double rice cultivation in China. Soil Science and Plant Nutrition, 2013, 59, 35-45.	1.9	31
15	Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutrient Cycling in Agroecosystems, 2012, 94, 111-122.	2.2	43
16	Carbon isotopic composition, methanogenic pathway, and fraction of CH ₄ oxidized in a rice field flooded year-round. Journal of Geophysical Research, 2011, 116, .	3.3	14