Christopher B Highley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1989881/publications.pdf

Version: 2024-02-01

34 papers

5,292 citations

236612 25 h-index 32 g-index

38 all docs 38 docs citations

38 times ranked 7105 citing authors

#	Article	IF	CITATIONS
1	User-defined, temporal presentation of bioactive molecules on hydrogel substrates using supramolecular coiled coil complexes. Biomaterials Science, 2021, 9, 4374-4387.	2.6	7
2	Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities. Biomaterials Science, 2021, 9, 4228-4245.	2.6	15
3	Guest–Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation. ACS Biomaterials Science and Engineering, 2021, 7, 4164-4174.	2.6	28
4	Selective and Improved Photoannealing of Microporous Annealed Particle (MAP) Scaffolds. ACS Biomaterials Science and Engineering, 2021, 7, 422-427.	2.6	14
5	3D Printing in Suspension Baths: Keeping the Promises of Bioprinting Afloat. Trends in Biotechnology, 2020, 38, 584-593.	4.9	183
6	3D Bioprinting Technologies. , 2019, , 1-66.		1
7	Jammed Microgel Inks for 3D Printing Applications. Advanced Science, 2019, 6, 1801076.	5.6	270
8	Frontispiece: Ruthenium rosslinked Hydrogels with Rapid, Visibleâ€Light Degradation. Chemistry - A European Journal, 2018, 24, .	1.7	0
9	Threeâ€dimensional extrusion bioprinting of single―and doubleâ€network hydrogels containing dynamic covalent crosslinks. Journal of Biomedical Materials Research - Part A, 2018, 106, 865-875.	2.1	218
10	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	23.3	502
11	Rutheniumâ€Crosslinked Hydrogels with Rapid, Visibleâ€Light Degradation. Chemistry - A European Journal, 2018, 24, 2328-2333.	1.7	36
12	Complex 3Dâ€Printed Microchannels within Cellâ€Degradable Hydrogels. Advanced Functional Materials, 2018, 28, 1801331.	7.8	171
13	Norbornene-modified poly(glycerol sebacate) as a photocurable and biodegradable elastomer. Polymer Chemistry, 2017, 8, 5091-5099.	1.9	46
14	A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photoâ€crosslinkable Inks. Advanced Materials, 2017, 29, 1604983.	11.1	414
15	Near-infrared light triggered release of molecules from supramolecular hydrogel-nanorod composites. Nanomedicine, 2016, 11, 1579-1590.	1.7	20
16	3D printing of photocurable poly(glycerol sebacate) elastomers. Biofabrication, 2016, 8, 045004.	3.7	67
17	Injectable and Cytocompatible Tough Doubleâ€Network Hydrogels through Tandem Supramolecular and Covalent Crosslinking. Advanced Materials, 2016, 28, 8419-8424.	11.1	233
18	Evolution of hierarchical porous structures in supramolecular guest–host hydrogels. Soft Matter, 2016, 12, 7839-7847.	1.2	21

#	Article	IF	CITATIONS
19	3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomaterials Science and Engineering, 2016, 2, 1743-1751.	2.6	473
20	Recent advances in hyaluronic acid hydrogels for biomedical applications. Current Opinion in Biotechnology, 2016, 40, 35-40.	3.3	441
21	Direct 3D Printing of Shearâ€Thinning Hydrogels into Selfâ€Healing Hydrogels. Advanced Materials, 2015, 27, 5075-5079.	11.1	831
22	One-Step Generation of Multifunctional Polyelectrolyte Microcapsules <i>via</i> Nanoscale Interfacial Complexation in Emulsion (NICE). ACS Nano, 2015, 9, 8269-8278.	7.3	70
23	Ordered, adherent layers of nanofibers enabled by supramolecular interactions. Journal of Materials Chemistry B, 2014, 2, 8110-8115.	2.9	22
24	Microfluidic system with integrated microinjector for automated Drosophila embryo injection. Lab on A Chip, 2012, 12, 4911.	3.1	30
25	Enhanced cellular uptake and long-term retention of chitosan-modified iron-oxide nanoparticles for MRI-based cell tracking. International Journal of Nanomedicine, 2012, 7, 4613.	3.3	53
26	Direct and cell signaling-based, geometry-induced neuronal differentiation of neural stem cells. Integrative Biology (United Kingdom), 2011, 3, 1207.	0.6	27
27	Intracellular Drug Delivery by Poly(lactic- <i>co</i> glycolic acid) Nanoparticles, Revisited. Molecular Pharmaceutics, 2009, 6, 190-201.	2.3	210
28	In Situ Cross-linkable Hyaluronan Hydrogels Containing Polymeric Nanoparticles for Preventing Postsurgical Adhesions. Annals of Surgery, 2007, 245, 819-824.	2.1	95
29	The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials, 2007, 28, 975-983.	5.7	239
30	Peritoneal adhesion prevention with an in situ cross-linkable hyaluronan gel containing tissue-type plasminogen activator in a rabbit repeated-injury model. Biomaterials, 2007, 28, 3704-3713.	5.7	47
31	Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials, 2007, 28, 3418-3426.	5.7	126
32	Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone. Biomaterials, 2007, 28, 1778-1786.	5.7	115
33	In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials, 2006, 27, 4698-4705.	5.7	205
34	Peritoneal application of chitosan and UVâ€crossâ€linkable chitosan. Journal of Biomedical Materials Research - Part A, 2006, 78A, 668-675.	2.1	60