Gunwoo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1989836/publications.pdf

Version: 2024-02-01

17	1,427	14	17
papers	citations	h-index	g-index
21	21	21	2412
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cycling Li-O ₂ batteries via LiOH formation and decomposition. Science, 2015, 350, 530-533.	12.6	584
2	Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate. Journal of the American Chemical Society, 2017, 139, 14992-15004.	13.7	176
3	The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O ₂ Batteries. Journal of the American Chemical Society, 2018, 140, 1428-1437.	13.7	88
4	Understanding LiOH Chemistry in a Rutheniumâ€Catalyzed Li–O ₂ Battery. Angewandte Chemie - International Edition, 2017, 56, 16057-16062.	13.8	78
5	Surface-Sensitive NMR Detection of the Solid Electrolyte Interphase Layer on Reduced Graphene Oxide. Journal of Physical Chemistry Letters, 2017, 8, 1078-1085.	4.6	69
6	Exfoliation of Layered Na-Ion Anode Material Na ₂ Ti ₃ O ₇ for Enhanced Capacity and Cyclability. Chemistry of Materials, 2018, 30, 1505-1516.	6.7	63
7	Mechanistic Insights into the Challenges of Cycling a Nonaqueous Na–O ₂ Battery. Journal of Physical Chemistry Letters, 2016, 7, 4841-4846.	4.6	58
8	Understanding LiOH Formation in a Li-O $<$ sub $>$ 2 $<$ /sub $>$ Battery with Lil and H $<$ sub $>$ 2 $<$ /sub $>$ O Additives. ACS Catalysis, 2019, 9, 66-77.	11.2	57
9	Characterization of the Dynamics in the Protonic Conductor CsH ₂ PO ₄ by ¹⁷ O Solid-State NMR Spectroscopy and First-Principles Calculations: Correlating Phosphate and Protonic Motion. Journal of the American Chemical Society, 2015, 137, 3867-3876.	13.7	53
10	Understanding the Conduction Mechanism of the Protonic Conductor CsH2PO4 by Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 6504-6515.	3.1	44
11	Probing Oxide-Ion Mobility in the Mixed Ionic–Electronic Conductor La ₂ NiO _{4+Î′} by Solid-State ¹⁷ O MAS NMR Spectroscopy. Journal of the American Chemical Society, 2016, 138, 11958-11969.	13.7	37
12	Toward Reversible and Moisture-Tolerant Aprotic Lithium-Air Batteries. Joule, 2020, 4, 2501-2520.	24.0	37
13	Response to Comment on "Cycling Li-O ₂ batteries via LiOH formation and decompositionâ€. Science, 2016, 352, 667-667.	12.6	32
14	Understanding LiOH Chemistry in a Rutheniumâ€Catalyzed Li–O ₂ Battery. Angewandte Chemie, 2017, 129, 16273-16278.	2.0	24
15	Response to Comment on "Cycling Li-O ₂ batteries via LiOH formation and decomposition― Science, 2016, 352, 667-667.	12.6	11
16	Characterizing Nitrogen Sites in Nitrogen-Doped Reduced Graphene Oxide: A Combined Solid-State ¹⁵ N NMR, XPS, and DFT Approach. Journal of Physical Chemistry C, 2021, 125, 10558-10564.	3.1	10
17	Revealing Local Dynamics of the Protonic Conductor CsH(PO ₃ H) by Solid-State NMR Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 27830-27838.	3.1	6