Fiona M Watt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1988968/publications.pdf

Version: 2024-02-01

1457 2736 42,720 354 107 192 citations h-index g-index papers 384 384 384 43666 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	12.8	2,012
2	The Human Cell Atlas. ELife, 2017, 6, .	2.8	1,547
3	Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 2012, 11, 642-649.	13.3	1,346
4	Regulation of development and differentiation by the extracellular matrix. Development (Cambridge), 1993, 117, 1183-1198.	1.2	1,067
5	Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 1993, 73, 713-724.	13.5	1,057
6	Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.	13.7	946
7	Autophagy mediates the mitotic senescence transition. Genes and Development, 2009, 23, 798-803.	2.7	883
8	Stem cell patterning and fate in human epidermis. Cell, 1995, 80, 83-93.	13.5	758
9	Role of the extracellular matrix in regulating stem cell fate. Nature Reviews Molecular Cell Biology, 2013, 14, 467-473.	16.1	732
10	Lineage Tracing. Cell, 2012, 148, 33-45.	13.5	608
11	NEW EMBO MEMBER'S REVIEW: Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO Journal, 2002, 21, 3919-3926.	3.5	572
12	Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, $2017, 9, .$	5.8	512
13	Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32, 795-803.	9.4	492
14	Common genetic variation drives molecular heterogeneity in human iPSCs. Nature, 2017, 546, 370-375.	13.7	491
15	Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis. Cell Stem Cell, 2009, 4, 427-439.	5.2	450
16	Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes. Cell, 2013, 154, 452-464.	13.5	449
17	Changes in keratinocyte adhesion during terminal differentiation: Reduction in fibronectin binding precedes $\hat{l}\pm5\hat{l}^21$ integrin loss from the cell surface. Cell, 1990, 63, 425-435.	13.5	438
18	Stem cells: the generation and maintenance of cellular diversity. Development (Cambridge), 1989, 106, 619-633.	1.2	437

#	Article	IF	Citations
19	Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Current Biology, 2000, 10, 491-500.	1.8	423
20	Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biology, 2010, 12, 711-718.	4.6	414
21	Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature, 1989, 340, 307-309.	13.7	403
22	Manipulation of stem cell proliferation and lineage commitment:visualisation of label-retaining cells in wholemounts of mouse epidermis. Development (Cambridge), 2003, 130, 5241-5255.	1.2	382
23	Epithelial stem cells, wound healing and cancer. Nature Reviews Cancer, 2012, 12, 170-180.	12.8	382
24	Hair follicle dermal papilla cells at a glance. Journal of Cell Science, 2011, 124, 1179-1182.	1.2	375
25	Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biology, 2012, 14, 401-408.	4.6	350
26	Epidermal stem cells: markers, patterning and the control of stem cell fate. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 831-837.	1.8	342
27	c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Current Biology, 2001, 11, 558-568.	1.8	332
28	Fibroblast heterogeneity: implications for human disease. Journal of Clinical Investigation, 2018, 128, 26-35.	3.9	327
29	Contribution of stem cells and differentiated cells to epidermal tumours. Nature Reviews Cancer, 2003, 3, 444-451.	12.8	313
30	The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development (Cambridge), 1999, 126, 2409-2418.	1.2	312
31	Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. Journal of Investigative Dermatology, 2018, 138, 811-825.	0.3	306
32	Stratification and terminal differentiation of cultured epidermal cells. Nature, 1982, 295, 434-436.	13.7	304
33	Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell, 1995, 83, 957-968.	13.5	298
34	Transient activation of \hat{l}^2 -catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development (Cambridge), 2004, 131, 1787-1799.	1.2	298
35	Understanding fibroblast heterogeneity in the skin. Trends in Cell Biology, 2015, 25, 92-99.	3.6	298
36	Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development (Cambridge), 2009, 136, 2815-2823.	1.2	297

#	Article	IF	Citations
37	The EGF Receptor Provides an Essential Survival Signal for SOS-Dependent Skin Tumor Development. Cell, 2000, 102, 211-220.	13.5	288
38	The Basement Membrane of Hair Follicle Stem Cells Is a Muscle Cell Niche. Cell, 2011, 144, 577-589.	13.5	288
39	Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11958-11963.	3.3	286
40	Cell-Extracellular Matrix Interactions in Normal and Diseased Skin. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005124-a005124.	2.3	284
41	Epidermal Notch signalling: differentiation, cancer and adhesion. Current Opinion in Cell Biology, 2008, 20, 171-179.	2.6	264
42	Developmental cell programs are co-opted in inflammatory skin disease. Science, 2021, 371, .	6.0	264
43	Terminal differentiation of epidermal keratinocytes. Current Opinion in Cell Biology, 1989, 1, 1107-1115.	2.6	259
44	Expression of Î"NLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development (Cambridge), 2002, 129, 95-109.	1.2	259
45	Involucrin and Other Markers of Keratinocyte Terminal Differentiation. Journal of Investigative Dermatology, 1983, 81, S100-S103.	0.3	245
46	Stem Cell Depletion Through Epidermal Deletion of Rac1. Science, 2005, 309, 933-935.	6.0	243
47	Stem cell fate and patterning in mammalian epidermis. Current Opinion in Genetics and Development, 2001, 11, 410-417.	1.5	233
48	A crucial role of \hat{l}^21 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development (Cambridge), 2002, 129, 2303-2315.	1.2	232
49	The RNA Methyltransferase Misu (NSun2) Mediates Myc-Induced Proliferation and Is Upregulated in Tumors. Current Biology, 2006, 16, 971-981.	1.8	229
50	\hat{l}^2 -Catenin and Hedgehog Signal Strength Can Specify Number and Location of Hair Follicles in Adult Epidermis without Recruitment of Bulge Stem Cells. Developmental Cell, 2005, 9, 121-131.	3.1	223
51	Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends in Cell Biology, 2018, 28, 709-722.	3.6	219
52	Defining dermal adipose tissue. Experimental Dermatology, 2014, 23, 629-631.	1.4	218
53	Stem cells are dispensable for lung homeostasis but restore airways after injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9286-9291.	3.3	216
54	\hat{l}^2 -catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development (Cambridge), 1999, 126, 2285-2298.	1.2	211

#	Article	IF	CITATIONS
55	Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. Journal of Cell Biology, 1994, 124, 589-600.	2.3	210
56	Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. Journal of Cell Science, 2003, 116, 3227-3238.	1.2	208
57	The plakin family: versatile organizers of cytoskeletal architecture. Current Opinion in Genetics and Development, 1997, 7, 392-397.	1.5	204
58	Jagged 1 is a \hat{I}^2 -catenin target gene required for ectopic hair follicle formation in adult epidermis. Development (Cambridge), 2006, 133, 4427-4438.	1.2	202
59	Towards gene therapy for haemophilia B using primary human keratinocytes. Nature Genetics, 1993, 3, 180-183.	9.4	199
60	Periplakin, a Novel Component of Cornified Envelopes and Desmosomes That Belongs to the Plakin Family and Forms Complexes with Envoplakin. Journal of Cell Biology, 1997, 139, 1835-1849.	2.3	192
61	The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development (Cambridge), 2006, 133, 3027-3037.	1.2	185
62	Designer skin: lineage commitment in postnatal epidermis. Trends in Cell Biology, 2002, 12, 185-192.	3.6	182
63	Integrin expression during human epidermal development <i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 1991, 112, 193-206.	1.2	180
64	Epidermal stem cells are retained <i>in vivo</i> throughout skin aging. Aging Cell, 2008, 7, 250-259.	3.0	177
65	Defining Adult Stem Cells by Function, not by Phenotype. Annual Review of Biochemistry, 2018, 87, 1015-1027.	5.0	175
66	New roles for integrins in squamous-cell carcinoma. Nature Reviews Cancer, 2006, 6, 175-183.	12.8	174
67	Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nature Protocols, 2010, 5, 898-911.	5. 5	174
68	Epidermal stem cells: an update. Current Opinion in Genetics and Development, 2006, 16, 518-524.	1.5	173
69	Mammalian skin cell biology: At the interface between laboratory and clinic. Science, 2014, 346, 937-940.	6.0	168
70	Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development (Cambridge), 2003, 130, 2793-2808.	1.2	163
71	Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine, 2009, 1, 260-267.	3.3	162
72	Proliferative Heterogeneity in the Human Prostate: Evidence for Epithelial Stem Cells. Laboratory Investigation, 2000, 80, 1243-1250.	1.7	161

#	Article	IF	Citations
73	The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate. PLoS Genetics, 2011, 7, e1002403.	1.5	160
74	Differentiation of Embryonal Stem Cells into Keratinocytes: Comparison of Wild-Type and β1Integrin-Deficient Cells. Developmental Biology, 1996, 179, 184-196.	0.9	158
75	Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. Journal of Cell Science, 1988, 89, 373-378.	1.2	153
76	Sic Transit Gloria: Farewell to the Epidermal Transit Amplifying Cell?. Cell Stem Cell, 2007, 1, 371-381.	5.2	152
77	Human sebaceous tumors harbor inactivating mutations in LEF1. Nature Medicine, 2006, 12, 395-397.	15.2	149
78	Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nature Genetics, 2005, 37, 520-525.	9.4	148
79	Antinuclear Autoantibodies and Lupus Nephritis in Transgenic Mice Expressing Interferon \hat{I}^3 in the Epidermis. Journal of Experimental Medicine, 1997, 186, 1451-1459.	4.2	147
80	Epithelial Cell Differentiation Pathways in the Human Prostate: Identification of Intermediate Phenotypes by Keratin Expression. Journal of Histochemistry and Cytochemistry, 2001, 49, 271-278.	1.3	146
81	The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 155-163.	1.8	145
82	A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis. Journal of Clinical Investigation, 2001, 108, 527-536.	3.9	145
83	Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Current Biology, 2000, 10, 1447-1450.	1.8	144
84	MYC in mammalian epidermis: how can an oncogene stimulate differentiation?. Nature Reviews Cancer, 2008, 8, 234-242.	12.8	144
85	Stem Cell Heterogeneity and Plasticity in Epithelia. Cell Stem Cell, 2015, 16, 465-476.	5.2	144
86	The extracellular matrix and cell shape. Trends in Biochemical Sciences, 1986, 11, 482-485.	3.7	142
87	Transgenic Mice Expressing IFN- \hat{l}^3 in the Epidermis Have Eczema, Hair Hypopigmentation, and Hair Loss. Journal of Investigative Dermatology, 1997, 108, 412-422.	0.3	142
88	Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. Journal of Cell Science, 1996, 109, 3013-3023.	1.2	142
89	Diverse epigenetic strategies interact to control epidermal differentiation. Nature Cell Biology, 2012, 14, 753-763.	4.6	139
90	Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nature Cell Biology, 2017, 19, 603-613.	4.6	138

#	Article	IF	Citations
91	Integrin expression in normal, hyperplastic, dysplastic, and malignant oral epithelium. Journal of Pathology, 1993, 169, 235-243.	2.1	137
92	\hat{l}^21 Integrins Regulate Keratinocyte Adhesion and Differentiation by Distinct Mechanisms. Molecular Biology of the Cell, 2000, 11 , 453 - 466 .	0.9	137
93	Reprogramming adult dermis to a neonatal state through epidermal activation of \hat{l}^2 -catenin. Development (Cambridge), 2011, 138, 5189-5199.	1.2	137
94	Measurement of the Rate of Epidermal Terminal Differentiation: Expression of Involucrin by S-Phase Keratinocytes in Culture and in Psoriatic Plaques. Journal of Investigative Dermatology, 1987, 89, 349-352.	0.3	133
95	Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. Journal of Cell Biology, 2007, 179, 1599-1612.	2.3	131
96	Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development (Cambridge), 2003, 130, 6049-6063.	1.2	129
97	Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature, 2018, 557, 322-328.	13.7	129
98	Regulation of keratinocyte terminal differentiation by integrin-extracellular matrix interactions. Journal of Cell Science, 1993, 106, 175-182.	1.2	129
99	Epidermal Wnt/ \hat{l}^2 -catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1501-9.	3.3	128
100	Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3. Nature Cell Biology, 2008, 10, 194-201.	4.6	127
101	Changes in the expression of alphav integrins in oral squamous cell carcinomas. Journal of Oral Pathology and Medicine, 1997, 26, 63-68.	1.4	125
102	The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis. PLoS ONE, 2008, 3, e1483.	1.1	123
103	Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development (Cambridge), 2002, 129, 95-109.	1.2	119
104	Biochemical specificity of Xenopus notochord. Differentiation, 1985, 29, 109-115.	1.0	118
105	Characterization of Bipotential Epidermal Progenitors Derived from Human Sebaceous Gland: Contrasting Roles of c-Myc and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Catenin. Stem Cells, 2008, 26, 1241-1252.	1.4	117
106	Epidermal \hat{l}^2 -catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nature Communications, 2016, 7, 10537.	5.8	115
107	Inhibition of \hat{I}^2 -catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development (Cambridge), 2016, 143, 2522-35.	1.2	114
108	What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 2020, 183, 423-430.	1.4	114

#	Article	IF	Citations
109	Innate sensing of microbial products promotes wound-induced skin cancer. Nature Communications, 2015, 6, 5932.	5.8	113
110	Fibroblast state switching orchestrates dermal maturation and wound healing. Molecular Systems Biology, 2018, 14, e8174.	3.2	113
111	Keratinocyte Differentiation Is Regulated by the Rho and ROCK Signaling Pathway. Current Biology, 2003, 13, 2185-2189.	1.8	111
112	Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence. Stem Cell Reports, 2019, 12, 1190-1200.	2.3	111
113	A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development (Cambridge), 2002, 129, 2303-15.	1.2	111
114	Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. Journal of Cell Biology, 2006, 172, 139-149.	2.3	108
115	Comparison of integrin, cadherin, and catenin expression in squamous cell carcinomas of the oral cavity., 1998, 186, 8-16.		107
116	Markers of Epidermal Stem Cell Subpopulations in Adult Mammalian Skin. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013631-a013631.	2.9	103
117	The stem cell compartment in human interfollicular epidermis. Journal of Dermatological Science, 2002, 28, 173-180.	1.0	100
118	Human Skin Aging Is Associated with Reduced Expression of the Stem Cell Markers \hat{l}^21 Integrin and MCSP. Journal of Investigative Dermatology, 2010, 130, 604-608.	0.3	100
119	Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale. Biomaterials, 2010, 31, 5030-5041.	5.7	99
120	Influence of cytochalasin d-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes. Experimental Cell Research, 1988, 178, 199-210.	1.2	97
121	Functional Significance of CD9 Association with \hat{l}^21 Integrins in Human Epidermal Keratinocytes. Cell Adhesion and Communication, 1996, 4, 297-305.	1.7	95
122	Switch from $\hat{l}\pm\nu\hat{l}^25$ to $\hat{l}\pm\nu\hat{l}^26$ integrin expression protects squamous cell carcinomas from anoikis. Journal of Cell Biology, 2004, 166, 419-431.	2.3	95
123	Envoplakin and Periplakin are Components of the Paraneoplastic Pemphigus Antigen Complex. Journal of Investigative Dermatology, 1998, 111, 1236-1238.	0.3	92
124	The Interfollicular Epidermis of Adult Mouse Tail Comprises Two Distinct Cell Lineages that Are Differentially Regulated by Wnt, Edaradd, and Lrig1. Stem Cell Reports, 2013, 1, 19-27.	2.3	92
125	Epidermal Stem Cells Are Defined by Global Histone Modifications that Are Altered by Myc-Induced Differentiation. PLoS ONE, 2007, 2, e763.	1.1	89
126	Subcellular Distribution of Envoplakin and Periplakin. Journal of Cell Biology, 2000, 151, 573-586.	2.3	87

#	Article	IF	Citations
127	Transcriptional and post-translational regulation of beta 1 integrin expression during keratinocyte terminal differentiation Journal of Biological Chemistry, 1992, 267, 14852-14858.	1.6	87
128	Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for \hat{l}^2 -catenin and Notch signalling. Developmental Biology, 2008, 324, 55-67.	0.9	85
129	Type XVII collagen coordinates proliferation in the interfollicular epidermis. ELife, 2017, 6, .	2.8	85
130	Suprabasal $\hat{l}\pm6\hat{l}^24$ integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGF \hat{l}^2 signalling. Journal of Cell Science, 2003, 116, 3783-3791.	1.2	84
131	Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. Journal of Cell Science, 2004, 117, 4157-4168.	1.2	84
132	Epidermal Label-Retaining Cells: Background and Recent Applications. Journal of Investigative Dermatology Symposium Proceedings, 2004, 9, 196-201.	0.8	83
133	Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development (Cambridge), 2013, 140, 1433-1444.	1.2	82
134	Genome-wide association study in frontal fibrosing alopecia identifies four susceptibility loci including HLA-B*07:02. Nature Communications, 2019, 10, 1150.	5.8	82
135	The Epidermal Stem Cell Compartment: Variation in Expression Levels of E–Cadherin and Catenins Within the Basal Layer of Human Epidermis. Journal of Histochemistry and Cytochemistry, 1997, 45, 867-874.	1.3	80
136	Genomic gain of 5p15 leads to over-expression of Misu (NSUN2) in breast cancer. Cancer Letters, 2010, 289, 71-80.	3.2	80
137	Expression of Activated MEK1 in Differentiating Epidermal Cells Is Sufficient to Generate Hyperproliferative and Inflammatory Skin Lesions. Journal of Investigative Dermatology, 2004, 123, 503-515.	0.3	79
138	l̂²-Catenin Stabilization in Skin Fibroblasts Causes Fibrotic Lesions by Preventing Adipocyte Differentiation of the ReticularÂDermis. Journal of Investigative Dermatology, 2016, 136, 1130-1142.	0.3	79
139	A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nature Communications, 2017, 8, 14744.	5.8	77
140	Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes. Experimental Cell Research, 1987, 172, 43-53.	1.2	75
141	Interaction of periplakin and envoplakin with intermediate filaments. Journal of Cell Science, 2002, 115, 5027-5037.	1.2	75
142	Monodisperse collagen–gelatin beads as potential platforms for 3D cell culturing. Journal of Materials Chemistry B, 2013, 1, 5128.	2.9	75
143	Dermal Blimp1 Acts Downstream of Epidermal TGFβ and Wnt/β-Catenin toÂRegulate Hair Follicle Formation andÂGrowth. Journal of Investigative Dermatology, 2017, 137, 2270-2281.	0.3	75
144	Dual Role of Inactivating Lef1 Mutations in Epidermis: Tumor Promotion and Specification of Tumor Type. Cancer Research, 2007, 67, 2916-2921.	0.4	69

#	Article	IF	Citations
145	Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19903-19908.	3.3	69
146	Translational control of stem cell function. Nature Reviews Molecular Cell Biology, 2021, 22, 671-690.	16.1	69
147	A tumor-associated \hat{l}^21 integrin mutation that abrogates epithelial differentiation control. Journal of Cell Biology, 2003, 160, 589-596.	2.3	67
148	Prolonged expression of differentiated phenotype by chondrocytes cultured at low density on a composite substrate of collagen and agarose that restricts cell spreading. Differentiation, 1988, 38, 140-147.	1.0	66
149	Characterisation of Eight Monoclonal Antibodies to Involucrin. Hybridoma, 1992, 11, 367-379.	0.9	66
150	Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo. Journal of Investigative Dermatology, 2012, 132, 1084-1093.	0.3	66
151	l̂²â€Catenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial–mesenchymal transition. Journal of Pathology, 2012, 226, 575-587.	2.1	66
152	c-MYC-Induced Sebaceous Gland Differentiation Is Controlled by an Androgen Receptor/p53 Axis. Cell Reports, 2013, 3, 427-441.	2.9	66
153	CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. Journal of Cell Science, 1995, 108, 1959-1970.	1.2	66
154	Paraneoplastic Pemphigus Sera React Strongly with Multiple Epitopes on the Various Regions of Envoplakin and Periplakin, Except for the C-Terminal Homologous Domain of Periplakin. Journal of Investigative Dermatology, 2001, 116 , 556 - 563 .	0.3	65
155	Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells. Scientific Reports, 2016, 6, 18948.	1.6	65
156	Decreased expression of fibronectin and the $\langle i \rangle \hat{l} \pm \langle i \rangle 5 \langle i \rangle \hat{l}^2 \langle i \rangle \langle i \rangle 1 \langle i \rangle$ integrin during terminal differentiation of human keratinocytes. Journal of Cell Science, 1991, 98, 225-232.	1.2	65
157	Gene Targeting of Envoplakin, a Cytoskeletal Linker Protein and Precursor of the Epidermal Cornified Envelope. Molecular and Cellular Biology, 2001, 21, 7047-7053.	1.1	64
158	Loss of $\hat{l}\pm 6$ and \hat{l}^24 integrin subunits coincides with loss of basement membrane components in oral squamous cell carcinomas. Journal of Pathology, 1993, 171, 183-190.	2.1	62
159	Sin3a is essential for the genome integrity and viability of pluripotent cells. Developmental Biology, 2012, 363, 62-73.	0.9	62
160	Calcium-Induced Changes in Distribution and Solubility of Cadherins, Integrins and Their Associated Cytoplasmic Proteins in Human Keratinocytes. Cell Adhesion and Communication, 1995, 3, 201-215.	1.7	61
161	Role of the Notch Ligand Delta1 in Embryonic and Adult Mouse Epidermis. Journal of Investigative Dermatology, 2008, 128, 825-832.	0.3	61
162	Optimised retroviral infection of human epidermal keratinocytes: long-term expression of transduced integrin gene following grafting on to SCID mice. Gene Therapy, 1998, 5, 913-922.	2.3	59

#	Article	IF	Citations
163	What is the point of large-scale collections of human induced pluripotent stem cells?. Nature Biotechnology, 2013, 31, 875-877.	9.4	58
164	Role of Â-catenin in Epidermal Stem Cell Expansion, Lineage Selection, and Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 503-512.	2.0	58
165	Evidence Against a Major Role for Integrins in Calcium-Dependent Intercellular Adhesion of Epidermal Keratinocytes. Cell Adhesion and Communication, 1993, 1, 55-66.	1.7	56
166	p19 ARF $\hat{a}\in \hat{b}$ independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Reports, 2001, 2, 145-150.	2.0	56
167	Syntenin mediates Delta1-induced cohesiveness of epidermal stem cells in culture. Journal of Cell Science, 2007, 120, 2944-2952.	1.2	56
168	Map clusters of diseases to tackle multimorbidity. Nature, 2020, 579, 494-496.	13.7	55
169	Comparison of integrin expression and terminal differentiation capacity in cell lines derived from oral squamous cell carcinomas. Carcinogenesis, 1993, 14, 2171-2176.	1.3	54
170	Dermal Fibroblast-Derived Growth Factors Restore the Ability of \hat{l}^21 Integrin-Deficient Embryonal Stem Cells to Differentiate into Keratinocytes. Developmental Biology, 2001, 231, 321-333.	0.9	54
171	Delta regulates keratinocyte spreading and motility independently of differentiation. Mechanisms of Development, 2001, 107, 133-140.	1.7	54
172	Kazrin, a novel periplakin-interacting protein associated with desmosomes and the keratinocyte plasma membrane. Journal of Cell Biology, 2004, 166, 653-659.	2.3	54
173	Sox2 modulates the function of two distinct cell lineages in mouse skin. Developmental Biology, 2013, 382, 15-26.	0.9	54
174	Different Consequences of \hat{l}^21 Integrin Deletion in Neonatal and Adult Mouse Epidermis Reveal a Context-Dependent Role of Integrins in Regulating Proliferation, Differentiation, and Intercellular Communication. Journal of Investigative Dermatology, 2005, 125, 1215-1227.	0.3	53
175	Compartmentalized Epidermal Activation of \hat{l}^2 -Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity. Cell Reports, 2016, 14, 269-281.	2.9	53
176	Shape-Induced Terminal Differentiation of Human Epidermal Stem Cells Requires p38 and Is Regulated by Histone Acetylation. PLoS ONE, 2011, 6, e27259.	1.1	52
177	Mimicking the topography of the epidermal–dermal interface with elastomer substrates. Integrative Biology (United Kingdom), 2016, 8, 21-29.	0.6	52
178	Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility. ELife, 2014, 3, e01888.	2.8	51
179	Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17796-17807.	3.3	50
180	Functional down-regulation of $\hat{l}\pm 5\hat{l}^21$ integrin in keratinocytes is reversible but commitment to terminal differentiation is not. Journal of Cell Science, 1993, 106, 1131-1138.	1.2	50

#	Article	IF	CITATION
181	FRMD4A Upregulation in Human Squamous Cell Carcinoma Promotes Tumor Growth and Metastasis and Is Associated with Poor Prognosis. Cancer Research, 2012, 72, 3424-3436.	0.4	49
182	BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions. Stem Cell Reports, 2014, 3, 620-633.	2.3	49
183	Rewiring of an Epithelial Differentiation Factor, miR-203, to Inhibit Human Squamous Cell Carcinoma Metastasis. Cell Reports, 2014, 9, 104-117.	2.9	49
184	The adaptive immune response to cardiac injury—the true roadblock to effective regenerative therapies?. Npj Regenerative Medicine, 2017, 2, 19.	2.5	49
185	Unexpected Hedgehog–Wnt interactions in epithelial differentiation. Trends in Molecular Medicine, 2004, 10, 577-580.	3.5	48
186	A stem cell gene expression profile of human squamous cell carcinomas. Cancer Letters, 2008, 272, 23-31.	3.2	48
187	Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2928-2933.	3.3	47
188	An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature, 2018, 556, 376-380.	13.7	47
189	Applications and future directions for optical coherence tomography in dermatology*. British Journal of Dermatology, 2021, 184, 1014-1022.	1.4	47
190	Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen. Nature Communications, 2014, 5, 3540.	5.8	46
191	The Androgen Receptor Antagonizes Wnt/ \hat{l}^2 -Catenin Signaling in Epidermal Stem Cells. Journal of Investigative Dermatology, 2015, 135, 2753-2763.	0.3	46
192	A Model for in Vitro Studies of Epidermal Homeostasis: Proliferation and Involucrin Synthesis by Cultured Human Keratinocytes During Recovery After Stripping Off the Suprabasal Layers. Journal of Investigative Dermatology, 1988, 90, 739-743.	0.3	45
193	Cutting Edge: Amelioration of Kidney Disease in a Transgenic Mouse Model of Lupus Nephritis by Administration of the Caspase Inhibitor Carbobenzoxy-Valyl-Alanyl-Aspartyl-(β-o-methyl)-Fluoromethylketone. Journal of Immunology, 2001, 167, 2452-2455.	0.4	45
194	Decoupling geometrical and chemical cues directing epidermal stem cell fate on polymer brush-based cell micro-patterns. Integrative Biology (United Kingdom), 2013, 5, 899-910.	0.6	45
195	PA-FABP, a novel marker of human epidermal transit amplifying cells revealed by 2D protein gel electrophoresis and cDNA array hybridisation. FEBS Letters, 2000, 486, 149-154.	1.3	44
196	Role of LIM Kinases in Normal and Psoriatic Human Epidermis. Molecular Biology of the Cell, 2006, 17, 1888-1896.	0.9	44
197	Differential sensitivity of epidermal cell subpopulations to \hat{l}^2 -catenin-induced ectopic hair follicle formation. Developmental Biology, 2010, 343, 40-50.	0.9	44
198	Mimicking normal tissue architecture and perturbation in cancer with engineered micro-epidermis. Biomaterials, 2012, 33, 5221-5229.	5.7	44

#	Article	IF	Citations
199	A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis. ELife, 2017, 6, .	2.8	44
200	Influence of Cell Shape and Adhesiveness On Stratification and Terminal Differentiation of Human Keratinocytes in Culture. Journal of Cell Science, 1987, 1987, 313-326.	1.2	42
201	Altered expression of CD44 isoforms in squamous-cell carcinomas and cell lines derived from them., 1996, 66, 457-463.		42
202	Epidermal Stem Cells as Targets for Gene Transfer. Human Gene Therapy, 2000, 11, 2261-2266.	1.4	41
203	Regulation of Interleukin-1α Expression by Integrins and Epidermal Growth Factor Receptor in Keratinocytes from a Mouse Model of Inflammatory Skin Disease. Journal of Biological Chemistry, 2003, 278, 19798-19807.	1.6	41
204	A high-content platform to characterise human induced pluripotent stem cell lines. Methods, 2016, 96, 85-96.	1.9	41
205	Expression of Notch pathway genes in mammalian epidermis and modulation by \hat{l}^2 -Catenin. Developmental Dynamics, 2007, 236, 1595-1601.	0.8	40
206	Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress. Cell Stem Cell, 2019, 25, 814-829.e6.	5.2	40
207	Population-scale proteome variation in human induced pluripotent stem cells. ELife, 2020, 9, .	2.8	40
208	The $\hat{l}\pm2$ and $\hat{l}\pm5$ integrin genes: identification of transcription factors that regulate promoter activity in epidermal keratinocytes. FEBS Letters, 2000, 474, 201-207.	1.3	39
209	Patterning of human epidermal stem cells on undulating elastomer substrates reflects differences in cell stiffness. Acta Biomaterialia, 2019, 87, 256-264.	4.1	39
210	Changes in the abundance and distribution of actin and associated proteins during terminal differentiation of human epidermal kÃ@ratinocytes. Journal of Cell Science, 1991, 100, 153-165.	1.2	39
211	The epidermal keratinocyte. BioEssays, 1988, 8, 163-167.	1.2	38
212	Integrin Expression by Human Epidermal Keratinocytes Can Be Modulated by Interferon- \hat{l}^3 , Transforming Growth Factor- \hat{l}^2 , Tumor Necrosis Factor- \hat{l}^\pm , and Culture on a Dermal Equivalent. Journal of Investigative Dermatology, 1995, 104, 260-265.	0.3	38
213	Biosynthesis of EGF receptor, transferrin receptor and colligin by cultured human keratinocytes and the effect of retinoic acid. Experimental Cell Research, 1985, 159, 47-54.	1.2	37
214	Kazrin regulates keratinocyte cytoskeletal networks, intercellular junctions and differentiation. Journal of Cell Science, 2008, 121, 3561-3569.	1.2	37
215	An Activating \hat{l}^21 Integrin Mutation Increases the Conversion of Benign to Malignant Skin Tumors. Cancer Research, 2009, 69, 1334-1342.	0.4	37
216	Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation. Cancer Letters, 2016, 383, 106-114.	3.2	37

#	Article	IF	CITATIONS
217	Expression of E-cadherin, P-cadherin and involucrin by normal and neoplastic keratinocytes in culture. Carcinogenesis, 1991, 12, 1345-1349.	1.3	36
218	Efficient Differentiation of Embryonic Stem Cells into Mesodermal Precursors by BMP, Retinoic Acid and Notch Signalling. PLoS ONE, 2012, 7, e36405.	1.1	36
219	Seven Actionable Strategies for Advancing Women in Science, Engineering, and Medicine. Cell Stem Cell, 2015, 16, 221-224.	5.2	36
220	Homeostasis, regeneration and tumour formation in the mammalian epidermis. International Journal of Developmental Biology, 2018, 62, 571-582.	0.3	36
221	ldentifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Reports, 2019, 26, 2078-2087.e3.	2.9	36
222	Hair follicle epidermal stem cells define a niche for tactile sensation. ELife, 2018, 7, .	2.8	36
223	PI3-kinase-dependent activation of apoptotic machinery occurs on commitment of epidermal keratinocytes to terminal differentiation. Cell Research, 2009, 19, 328-339.	5.7	35
224	Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nature Communications, 2020, 11, 5067.	5.8	35
225	Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology. Nature Communications, 2020, 11, 5671.	5.8	35
226	Envoplakin, a Possible Candidate Gene for Focal NEPPK/Esophageal Cancer (TOC): The Integration of Genetic and Physical Maps of the TOC Region on 17q25. Genomics, 1999, 59, 234-242.	1.3	34
227	Adult epidermal Notch activity induces dermal accumulation of T cells and neural crest derivatives through upregulation of jagged 1. Development (Cambridge), 2010, 137, 3569-3579.	1.2	34
228	<scp>LRIG1 /scp> regulates cadherinâ€dependent contact inhibition directing epithelial homeostasis and preâ€invasive squamous cell carcinoma development. Journal of Pathology, 2013, 229, 608-620.</scp>	2.1	34
229	High-throughput micropatterning platform reveals Nodal-dependent bisection of peri-gastrulation–associated versus preneurulation-associated fate patterning. PLoS Biology, 2019, 17, e3000081.	2.6	34
230	Two strains of human keratinocytes transfected with HPV16 DNA: comparison with the normal parental cells. Carcinogenesis, 1991, 12, 277-284.	1.3	33
231	Cell Adhesion: Fibronectin and integrin knockouts come unstuck. Current Biology, 1994, 4, 270-272.	1.8	33
232	Onset of expression of peanut lectin-binding glycoproteins is correlated with stratification of keratinocytes during human epidermal development <i>in vivo</i> and <i>in vitro</i> Journal of Cell Science, 1989, 94, 355-359.	1.2	33
233	HAN11 binds mDia1 and controls GLI1 transcriptional activity. Journal of Dermatological Science, 2006, 44, 11-20.	1.0	32
234	Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure. Journal of Pathology, 2016, 239, 374-383.	2.1	32

#	Article	IF	CITATIONS
235	Immunomodulatory role of Keratin 76 in oral and gastric cancer. Nature Communications, 2018, 9, 3437.	5.8	32
236	Dose and context dependent effects of Myc on epidermal stem cell proliferation and differentiation. EMBO Molecular Medicine, 2010, 2, 16-25.	3.3	31
237	Fate of Prominin-1 Expressing Dermal Papilla Cells during Homeostasis, Wound Healing and Wnt Activation. Journal of Investigative Dermatology, 2015, 135, 2926-2934.	0.3	31
238	Changes in the Distribution of Actin-Associated Proteins During Epidermal Wound Healing. Journal of Investigative Dermatology, 1993, 100, 785-789.	0.3	30
239	Necl2 regulates epidermal adhesion and wound repair. Development (Cambridge), 2009, 136, 3505-3514.	1.2	30
240	KazrinE is a desmosome-associated liprin that colocalises with acetylated microtubules. Journal of Cell Science, 2009, 122, 4035-4041.	1.2	30
241	Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis. Cancer Research, 2016, 76, 805-817.	0.4	30
242	Epidermal stem cells in culture. Journal of Cell Science, 1988, 1988, 85-94.	1.2	29
243	Chromosomal Localisation of the Human Envoplakin Gene (EVPL) to the Region of the Tylosis Oesophageal Cancer Gene (TOCG) on 17q25. Genomics, 1996, 37, 381-385.	1.3	29
244	Patterns of junctional communication in skin: Studies on cultured keratinocytes. Experimental Cell Research, 1987, 173, 431-438.	1.2	27
245	Engineered Microenvironments to Direct Epidermal Stem Cell Behavior at Single-Cell Resolution. Developmental Cell, 2016, 38, 601-609.	3.1	27
246	The peanut lectin-binding glycoproteins of human epidermal keratinocytes. Experimental Cell Research, 1988, 177, 247-256.	1.2	26
247	Proliferation and terminal differentiation of human epidermal keratinocytes in culture. Biochemical Society Transactions, 1988, 16, 666-668.	1.6	26
248	Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility. Journal of Investigative Dermatology, 2016, 136, 99-106.	0.3	26
249	The Vitamin D Receptor Is Required for Mouse Hair Cycle Progression but not for Maintenance of the Epidermal Stem Cell Compartment. Journal of Investigative Dermatology, 2008, 128, 2113-2117.	0.3	24
250	A blueprint for translational regenerative medicine. Science Translational Medicine, 2020, 12, .	5.8	24
251	Activin A is an anticatabolic autocrine cytokine in articular cartilage whose production is controlled by fibroblast growth factor 2 and NFâ€₽B. Arthritis and Rheumatism, 2007, 56, 3715-3725.	6.7	23
252	Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin. Developmental Biology, 2012, 366, 290-297.	0.9	23

#	Article	IF	CITATIONS
253	Repeal and Replace: Adipocyte Regeneration in Wound Repair. Cell Stem Cell, 2017, 20, 424-426.	5.2	23
254	Human epidermal stem cell differentiation is modulated by specific lipid subspecies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22173-22182.	3.3	23
255	Distinct Fibroblast Lineages Give Rise to NG2+ Pericyte Populations in Mouse Skin Development and Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 675080.	1.8	23
256	Employing core regulatory circuits to define cell identity. EMBO Journal, 2021, 40, e106785.	3.5	23
257	Role of integrins in mouse eyelid development: studies in normal embryos and embryos in which there is a failure of eyelid fusion. Mechanisms of Development, 1998, 78, 37-45.	1.7	22
258	Structure and Regulation of the Envoplakin Gene. Journal of Biological Chemistry, 2000, 275, 19857-19865.	1.6	21
259	Delta-like 1-mediated cis-inhibition of Jagged 1/2 signalling inhibits differentiation of human epidermal cells in culture. Scientific Reports, 2019, 9, 10825.	1.6	21
260	The eLife approach to peer review. ELife, 2013, 2, e00799.	2.8	21
261	Epidermal Cadm1 Expression Promotes Autoimmune Alopecia via Enhanced T Cell Adhesion and Cytotoxicity. Journal of Immunology, 2012, 188, 1514-1522.	0.4	20
262	Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse. PLoS Genetics, 2014, 10, e1004705.	1.5	20
263	Micro-scaled topographies direct differentiation of human epidermal stem cells. Acta Biomaterialia, 2019, 84, 133-145.	4.1	20
264	Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity. Journal of Cell Science, 2010, 123, 4128-4144.	1.2	19
265	Downregulation of Keratin 76 Expression during Oral Carcinogenesis of Human, Hamster and Mouse. PLoS ONE, 2013, 8, e70688.	1.1	18
266	Pentapeptide inhibitor of epidermal mitosis: production and responsiveness in cultures of normal, transformed and neoplastic human keratinocytes. Carcinogenesis, 1989, 10, 2249-2253.	1.3	17
267	A Novel Automated High-Content Analysis Workflow Capturing Cell Population Dynamics from Induced Pluripotent Stem Cell Live Imaging Data. Journal of Biomolecular Screening, 2016, 21, 887-896.	2.6	17
268	Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells. Genome Biology, 2018, 19, 3.	3.8	17
269	Lrig1 marks a population of gastric epithelial cells capable of long-term tissue maintenance and growth in vitro. Scientific Reports, 2018, 8, 15255.	1.6	17
270	Mutant Lef1 controls Gata6 in sebaceous gland development and cancer. EMBO Journal, 2019, 38, .	3.5	16

#	Article	lF	CITATIONS
271	Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports, 2022, 17, 1033-1047.	2.3	16
272	Calcium-Induced Intercellular Adhesion of Keratinocytes Does not Involve Accumulation of \hat{l}^2 (sub>1Integrins at Cell-Cell Contacts and Does not Involve Changes in the Levels or Phosphorylation of Catenins. Cell Adhesion and Communication, 1998, 5, 137-149.	1.7	15
273	Suprabasal $\hat{l}\pm 5\hat{l}^21$ integrin expression stimulates formation of epidermal squamous cell carcinomas without disrupting TGF \hat{l}^2 signaling or inducing spindle cell tumors. Molecular Carcinogenesis, 2005, 44, 60-66.	1.3	15
274	Mentorship in Science: Response to AlShebli etÂal., Nature Communications 2020. Stem Cell Reports, 2021, 16, 1-2.	2.3	15
275	Adhesion of Human Epidermal Keratinocytes to Laminin. Cell Adhesion and Communication, 1994, 2, 309-318.	1.7	14
276	Identification of Novel Keratinocyte Differentiation Modulating Compounds by High-Throughput Screening. Journal of Biomolecular Screening, 2006, 11, 977-984.	2.6	14
277	Epidermal Deletion of Rac1 Causes Stem Cell Depletion, Irrespective of whether Deletion Occurs during Embryogenesis or Adulthood. Journal of Investigative Dermatology, 2007, 127, 1555-1557.	0.3	14
278	High-throughput stem-cell niches. Nature Methods, 2011, 8, 915-916.	9.0	14
279	Pelota Regulates Epidermal Differentiation by Modulating BMP and PI3K/AKT SignalingÂPathways. Journal of Investigative Dermatology, 2016, 136, 1664-1671.	0.3	14
280	Bench to bedside: Current advances in regenerative medicine. Current Opinion in Cell Biology, 2018, 55, 59-66.	2.6	14
281	Clinically Relevant Vulnerabilities of Deep Machine Learning Systems for Skin Cancer Diagnosis. Journal of Investigative Dermatology, 2021, 141, 916-920.	0.3	14
282	An HNF1 $\hat{l}\pm$ truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1 \hat{l}^2 function. Cell Reports, 2022, 38, 110425.	2.9	12
283	Changes in cell-surface carbohydrate during terminal differentiation of human epidermal keratinocytes. Biochemical Society Transactions, 1992, 20, 285-288.	1.6	11
284	KazrinA is required for axial elongation and epidermal integrity in <i>Xenopus tropicalis</i> Developmental Dynamics, 2008, 237, 1718-1725.	0.8	11
285	Fibrotic enzymes modulate woundâ€induced skin tumorigenesis. EMBO Reports, 2021, 22, e51573.	2.0	11
286	Kalinin, epiligrin and GB3 antigen: kalinepiligrinin-3?. Current Biology, 1992, 2, 106-107.	1.8	10
287	Sequence variation in the I-like domain of the \hat{I}^21 integrin subunit in human oral squamous cell carcinomas. Cancer Letters, 2004, 213, 189-194.	3.2	10
288	Women in cell biology: getting to the top. Nature Reviews Molecular Cell Biology, 2006, 7, 287-290.	16.1	10

#	Article	IF	CITATIONS
289	Loxl2 is dispensable for dermal development, homeostasis and tumour stroma formation. PLoS ONE, 2018, 13, e0199679.	1.1	10
290	Dynamic Culture Substrates That Mimic the Topography of the Epidermal–Dermal Junction. Tissue Engineering - Part A, 2019, 25, 214-223.	1.6	10
291	NOTCH1 signaling in oral squamous cell carcinoma via a TEL2/SERPINE1 axis. Oncotarget, 2019, 10, 6791-6804.	0.8	10
292	How COVID-19 has changed medical research funding. Interface Focus, 2021, 11, 20210025.	1.5	10
293	Characterisation of the peanut lectin-binding glycoproteins of human epidermal keratinocytes. Differentiation, 1990, 43, 139-145.	1.0	9
294	Transfection of \hat{l}^2 4Integrin Subunit into a Neoplastic Keratinocyte Line Fails to Restore Terminal Differentiation Capacity or Influence Proliferation. Cell Adhesion and Communication, 1996, 4, 307-316.	1.7	9
295	Myosin 10 is involved in murine pigmentation. Experimental Dermatology, 2019, 28, 391-394.	1.4	9
296	Launching eLife, Part 1. ELife, 2012, 1, e00270.	2.8	9
297	Role of distinct fibroblast lineages and immune cells in dermal repair following UV radiation-induced tissue damage. ELife, $2021,10,10$	2.8	9
298	Studies with cultured human epidermal keratinocytes: Potential relevance to corneal wound healing. Eye, 1994, 8, 161-162.	1.1	8
299	Cultivation and Retroviral Infection of Human Epidermal Keratinocytes. , 2006, , 133-138.		8
300	Rac1 Deletion Causes Thymic Atrophy. PLoS ONE, 2011, 6, e19292.	1.1	8
301	The role of keratins in modulating carcinogenesis via communication with cells of the immune system. Cell Stress, 2019, 3, 136-138.	1.4	8
302	Understanding Human Epidermal Stem Cells at Single-Cell Resolution. Journal of Investigative Dermatology, 2022, 142, 2061-2067.	0.3	8
303	Identification of an 80kD Protein Associated with the $\hat{l}\pm3\hat{l}^21$ Integrin as a Proteolytic Fragment of the $\hat{l}\pm3$ Subunit: Studies with Human Keratinocytes. Cell Adhesion and Communication, 1995, 3, 243-255.	1.7	7
304	Mammalian Epidermis: A Compendium of Lipid Functionality. Frontiers in Physiology, 2021, 12, 804824.	1.3	7
305	Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041238.	2.3	7
306	?1B integrin subunit contains a double lysine motif that can cause accumulation within the endoplasmic reticulum. Journal of Cellular Biochemistry, 2000, 78, 97-111.	1.2	6

#	Article	IF	Citations
307	Non-profit publishing: open access and the end of copyright transfer. Journal of Cell Science, 2004, 117, 1-1.	1.2	6
308	Pluripotent Stem Cell-Derived Hepatocytes Inhibit T Cell Proliferation In Vitro through Tryptophan Starvation. Cells, 2022, 11, 24.	1.8	6
309	Women in cell biology: how personal lives shape careers. Nature Reviews Molecular Cell Biology, 2006, 7, 378-380.	16.1	5
310	Understanding allergy and cancer risk: what are the barriers?. Nature Reviews Cancer, 2015, 15, 131-132.	12.8	5
311	A year in the life of eLife. ELife, 2013, 2, e01516.	2.8	5
312	Fran Balkwill. Journal of Cell Science, 2005, 118, 1339-1340.	1.2	4
313	Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation. Stem Cell Reports, 2021, 16, 2628-2641.	2.3	4
314	Launching eLife, Part 2. ELife, 2012, 1, e00365.	2.8	4
315	The Periplakin Gene Maps to 16p13.3 in Human and 16A–B1 in Mouse. Genomics, 1998, 49, 157-159.	1.3	3
316	Stem Cell Manifesto. Cell, 1999, 96, 470-473.	13.5	3
317	Joyce Taylor-Papadimitriou. Journal of Cell Science, 2004, 117, 371-372.	1.2	3
318	Penelope Jeggo. Journal of Cell Science, 2004, 117, 5459-5460.	1.2	3
319	Elaine Fuchs. Journal of Cell Science, 2004, 117, 4877-4879.	1.2	3
320	Amparo Cano. Journal of Cell Science, 2004, 117, 3075-3076.	1.2	3
321	Xin Lu. Journal of Cell Science, 2004, 117, 6265-6266.	1.2	3
322	Danielle Dhouailly. Journal of Cell Science, 2004, 117, 1873-1874.	1.2	3
323	Emiliana Borrelli. Journal of Cell Science, 2005, 118, 3223-3224.	1.2	3
324	Anna El'skaya. Journal of Cell Science, 2005, 118, 1777-1778.	1.2	3

#	Article	IF	CITATIONS
325	Elisabetta Dejana. Journal of Cell Science, 2005, 118, 2789-2790.	1.2	3
326	Exons 5–15 of Kazrin Are Dispensable for Murine Epidermal Morphogenesis and Homeostasis. Journal of Investigative Dermatology, 2012, 132, 1977-1987.	0.3	3
327	Galectin-6 is a novel skin anti-microbial peptide that is modulated by the skin barrier and microbiome. Journal of Dermatological Science, 2016, 84, 97-99.	1.0	3
328	Differential Expression of Insulin-Like Growth Factor 1 and Wnt Family Member 4 Correlates With Functional Heterogeneity of Human Dermal Fibroblasts. Frontiers in Cell and Developmental Biology, 2021, 9, 628039.	1.8	3
329	Angiotensin-Converting Enzyme 2 Expression Is Detectable in Keratinocytes, Cutaneous Appendages, and Blood Vessels by Multiplex RNA in Situ Hybridization. Advances in Skin and Wound Care, 2022, Publish Ahead of Print, .	0.5	3
330	Janet Heasman. Journal of Cell Science, 2004, 117, 1617-1618.	1.2	2
331	Sharyn Endow. Journal of Cell Science, 2004, 117, 655-656.	1.2	2
332	Recognizing the importance of new tools and resources for research. ELife, 2015, 4, .	2.8	2
333	(More) women in science. Nature Reviews Molecular Cell Biology, 2018, 19, 413-414.	16.1	2
334	UK funders learn from COVID-19 â€~white-water ride'. Nature, 2020, 583, 683-683.	13.7	2
335	eLife and early career researchers. ELife, 2013, 2, e01633.	2.8	2
336	Funding: end â€~publish or perish' for postdocs. Nature, 2022, 606, 250-250.	13.7	2
337	Human Epidermal Stem Cells. , 2004, , 245-256.		1
338	Julia Polak. Journal of Cell Science, 2004, 117, 5195-5196.	1.2	1
339	Topo IIÎ \pm reporter mice reveal proliferative regions in the epidermis and small intestine. FEBS Letters, 2005, 579, 6479-6485.	1.3	1
340	Integrin Special Issue. Journal of Cell Science, 2009, 122, 157-157.	1.2	1
341	JCS in 2010 – Ringing in the Changes. Journal of Cell Science, 2010, 123, 1-1.	1.2	1
342	Stem cells: on the front line. Journal of Cell Science, 2011, 124, 3527-3528.	1.2	1

#	Article	IF	CITATIONS
343	What does it take to recruit and retain senior women faculty?. ELife, 2013, 2, e00615.	2.8	1
344	Dynamic regulation of human epidermal differentiation by adhesive and mechanical forces. Current Topics in Developmental Biology, 2022, , 129-148.	1.0	1
345	Keratinocyte culture club. Nature, 1982, 300, 688-688.	13.7	O
346	Balancing Work and Life: A Conversation with Fiona Watt. Stem Cells, 2009, 27, 762-763.	1.4	0
347	Cell Biology of Tissues and Tumors. Molecular Biology of the Cell, 2010, 21, 3824-3824.	0.9	0
348	2009 Winner: Ravi Desai. Journal of Cell Science, 2010, 123, 815-815.	1.2	0
349	Fondation René Touraine. Experimental Dermatology, 2013, 22, 682-693.	1.4	0
350	CIRM and UKRMP: Different Ways to Invest in Regenerative Medicine. Cell Stem Cell, 2016, 19, 19-22.	5.2	0
351	Reply to Chi et al Journal of Investigative Dermatology, 2017, 137, 247-248.	0.3	0
352	The reward of great collaborations. Nature Cell Biology, 2018, 20, 1011-1011.	4.6	0
353	Effect of Culture Environment on Terminal Differentiation of Human Epidermal Keratinocytes., 1991,, 271-281.		0
354	Gradient boosting approaches can outperform logistic regression for risk prediction in cutaneous allergy. Contact Dermatitis, 2021, , .	0.8	0