Qianjin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1988552/publications.pdf Version: 2024-02-01

ΟΙΔΝΙΙΝ CHEN

#	Article	IF	CITATIONS
1	Electrochemical Sulfonylation-Induced Lactonization of Alkenes: Synthesis of Sulfonyl Phthalides. Journal of Organic Chemistry, 2022, 87, 1208-1217.	1.7	13
2	Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles. Chinese Chemical Letters, 2022, 33, 5158-5161.	4.8	24
3	Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. Journal of Physical Chemistry Letters, 2022, 13, 6153-6163.	2.1	10
4	Direct measuring of single–heterogeneous bubble nucleation mediated by surface topology. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
5	Electrochemical Oxidative Halogenation of <i>N</i> -Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones. Journal of Organic Chemistry, 2021, 86, 917-928.	1.7	46
6	Radical generation from electroreduction of aryl and benzyl ammonium salts: synthesis of organoboronates. Organic Chemistry Frontiers, 2021, 8, 702-707.	2.3	15
7	Dynamic Equilibrium Model for Surface Nanobubbles in Electrochemistry. Langmuir, 2021, 37, 2771-2779.	1.6	15
8	Scanning Electrochemical Cell Microscope Study of Individual H2 Gas Bubble Nucleation on Platinum: Effect of Surfactants. Chinese Journal of Analytical Chemistry, 2021, 49, e21055-e21064.	0.9	8
9	Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering. Composites Science and Technology, 2021, 207, 108696.	3.8	74
10	Electrochemical Oxidative Cross-Coupling between Vinyl Azides and Thiophenols: Synthesis of gem-Bisarylthio Enamines. Journal of Organic Chemistry, 2021, 86, 15946-15952.	1.7	12
11	Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Analytical Chemistry, 2021, 93, 12337-12345.	3.2	23
12	Direct electrochemical reduction and dyeing properties of CI Vat Yellow 1 using carbon felt electrode. Dyes and Pigments, 2021, 184, 108835.	2.0	15
13	Visualization and Quantification of Electrochemical H ₂ Bubble Nucleation at Pt, Au, and MoS ₂ Substrates. ACS Sensors, 2021, 6, 355-363.	4.0	48
14	Recent progress in gas nanobubble electrochemistry. Scientia Sinica Chimica, 2021, 51, 310-322.	0.2	2
15	Direct Probing of the Oxygen Evolution Reaction at Single NiFe ₂ O ₄ Nanocrystal Superparticles with Tunable Structures. Journal of the American Chemical Society, 2021, 143, 16925-16929.	6.6	38
16	Editorial: Single-Entity Electrochemistry. Frontiers in Chemistry, 2021, 9, 812273.	1.8	0
17	Electrochemical Oxidationâ€induced Difunctionalization of Alkynes and Alkenes with Sulfonyl Hydrazides: Facile Access to βâ€Selenovinyl Sulfones and βâ€Ketosulfones. Asian Journal of Organic Chemistry, 2020, 9, 1760-1764.	1.3	25
18	Electrochemical Tandem Fluoroalkylation-Cyclization of Vinyl Azides: Access to Trifluoroethylated and Difluoroethylated N-Heterocycles. Journal of Organic Chemistry, 2020, 85, 15708-15716.	1.7	32

QIANJIN CHEN

#	Article	IF	CITATIONS
19	Metalâ€Free Electrochemical Coupling of Vinyl Azides: Synthesis of Phenanthridines and <i>β</i> â€Ketosulfones. European Journal of Organic Chemistry, 2020, 2020, 6135-6145.	1.2	22
20	Nitrogen Bubbles at Pt Nanoelectrodes in a Nonaqueous Medium: Oscillating Behavior and Geometry of Critical Nuclei. Analytical Chemistry, 2020, 92, 6408-6414.	3.2	25
21	Effects of the Hydrogen Bonding Network on Electrophilic Activation and Electrode Passivation: Electrochemical Chlorination and Bromination of Aromatics. ChemElectroChem, 2019, 6, 3726-3730.	1.7	12
22	Electrochemical oxidations of thioethers: Modulation of oxidation potential using a hydrogen bonding network. Electrochemistry Communications, 2019, 109, 106583.	2.3	27
23	A Mass Transfer-Based Method for Controlled Electrosynthesis and Organization of Tetrathiafulvalene Bromide Micro/Nanowires. Journal of the Electrochemical Society, 2019, 166, H63-H69.	1.3	5
24	Electrochemical synthesis of enaminones <i>via</i> a decarboxylative coupling reaction. Green Chemistry, 2019, 21, 3796-3801.	4.6	75
25	Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes. Langmuir, 2018, 34, 4554-4559.	1.6	38
26	Hydrogen Bubble Formation at Hydrogen-Insertion Electrodes. Journal of Physical Chemistry C, 2018, 122, 15421-15426.	1.5	30
27	The Dynamic Steady State of an Electrochemically Generated Nanobubble. Langmuir, 2017, 33, 1845-1853.	1.6	42
28	Electrochemical Size Measurement and Characterization of Electrodeposited Platinum Nanoparticles at Nanometer Resolution with Scanning Electrochemical Microscopy. Nano Letters, 2017, 17, 4354-4358.	4.5	36
29	Electrochemical Generation of Individual O ₂ Nanobubbles via H ₂ O ₂ Oxidation. Journal of Physical Chemistry Letters, 2017, 8, 2450-2454.	2.1	73
30	Single Nanochannel Platform for Detecting Chiral Drugs. Analytical Chemistry, 2017, 89, 1110-1116.	3.2	70
31	Laplace Pressure of Individual H ₂ Nanobubbles from Pressure–Addition Electrochemistry. Nano Letters, 2016, 16, 6691-6694.	4.5	59
32	Redox Cycling in Nanogap Electrochemical Cells. The Role of Electrostatics in Determining the Cell Response. Journal of Physical Chemistry C, 2016, 120, 17251-17260.	1.5	42
33	Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions. Faraday Discussions, 2016, 193, 223-240.	1.6	73
34	Electrochemical Measurement of Hydrogen and Nitrogen Nanobubble Lifetimes at Pt Nanoelectrodes. Journal of the Electrochemical Society, 2016, 163, H3160-H3166.	1.3	46
35	How does a polymer chain pass through a cylindrical pore under anÂelongational flow field?. Polymer, 2015, 67, A1-A13.	1.8	20
36	Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode. Langmuir, 2015, 31, 4573-4581.	1.6	77

QIANJIN CHEN

#	Article	IF	CITATIONS
37	lon Transport within High Electric Fields in Nanogap Electrochemical Cells. ACS Nano, 2015, 9, 8520-8529.	7.3	49
38	Electrochemical Nucleation of Stable N ₂ Nanobubbles at Pt Nanoelectrodes. Journal of the American Chemical Society, 2015, 137, 12064-12069.	6.6	113
39	(Allen J. Bard Award) The Electrochemical Nucleation and Physical Behavior of Hydrogen Nanobubbles. ECS Meeting Abstracts, 2015, , .	0.0	0
40	Mapping Phase Diagrams of Polymer Solutions by a Combination of Microfluidic Solution Droplets and Laser Light-Scattering Detection. Macromolecules, 2014, 47, 2496-2502.	2.2	10
41	One Stone Kills Three Birds: Novel Boron-Containing Vesicles for Potential BNCT, Controlled Drug Release, and Diagnostic Imaging. Molecular Pharmaceutics, 2014, 11, 3291-3299.	2.3	41
42	Electrochemical Measurements of Single H ₂ Nanobubble Nucleation and Stability at Pt Nanoelectrodes. Journal of Physical Chemistry Letters, 2014, 5, 3539-3544.	2.1	157
43	Enhanced Fluid Flow through Nanopores by Polymer Brushes. Langmuir, 2014, 30, 8119-8123.	1.6	5
44	The core–shell structure of PNIPAM collapsed chain conformation induces a bimodal transition on cooling. Soft Matter, 2013, 9, 3985.	1.2	14
45	How Long Cylindrical Micelles Formed after Extruding Block Copolymer in a Selective Solvent through a Small Pore Fragment back into Spherical Ones. Macromolecules, 2013, 46, 9164-9167.	2.2	4
46	Nanoparticle‣oaded Cylindrical Micelles from Nanopore Extrusion of Block Copolymer Spherical Micelles. Macromolecular Rapid Communications, 2013, 34, 1850-1855.	2.0	9
47	How does a supercoiled DNA chain pass through a small conical glass pore?. Soft Matter, 2012, 8, 5451.	1.2	7
48	What Morphologies Do We Want? – TEM Images from Dilute Diblock Copolymer Solutions. Macromolecular Chemistry and Physics, 2011, 212, 663-672.	1.1	21
49	An Effective Targeted Nanoglobular Manganese(II) Chelate Conjugate for Magnetic Resonance Molecular Imaging of Tumor Extracellular Matrix. Molecular Pharmaceutics, 2010, 7, 936-943.	2.3	37
50	Translocation Dynamics of Poly(styrenesulfonic acid) through an α-Hemolysin Protein Nanopore. Macromolecules, 2010, 43, 10594-10599.	2.2	20
51	Peptide-Targeted Nanoglobular Gd-DOTA Monoamide Conjugates for Magnetic Resonance Cancer Molecular Imaging. Biomacromolecules, 2010, 11, 754-761.	2.6	80
52	Nanopore Extrusion-Induced Transition from Spherical to Cylindrical Block Copolymer Micelles. Journal of the American Chemical Society, 2009, 131, 16650-16651.	6.6	60
53	Thermal properties and flame retardancy of polycarbonate/hydroxyapatite nanocomposite. Journal of Applied Polymer Science, 2008, 109, 659-663.	1.3	39