
Carlos Garrido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1988548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Sequential Inoculation with the Non- <i>Saccharomyces T. delbrueckii</i> and <i>M. pulcherrima</i> Combined with <i>Saccharomyces cerevisiae</i> Strains on Chemicals and Sensory Profile of Rosé Wines. Journal of Agricultural and Food Chemistry, 2021, 69, 1598-1609.	5.2	22
2	Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis cinerea. Biology, 2021, 10, 492.	2.8	27
3	Deletion of the Bcnrps1 Gene Increases the Pathogenicity of Botrytis cinerea and Reduces Its Tolerance to the Exogenous Toxic Substances Spermidine and Pyrimethanil. Journal of Fungi (Basel,) Tj ETQq1	10. 7&4314	rg&T /Overlo
4	Recent approaches on the genomic analysis of the phytopathogenic fungus Colletotrichum spp Phytochemistry Reviews, 2020, 19, 589-601.	6.5	4
5	Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews, 2020, 19, 721-740.	6.5	52
6	Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. Science of the Total Environment, 2020, 708, 135129.	8.0	47
7	Identification of the Sesquiterpene Cyclase Involved in the Biosynthesis of (+)-4-Epi-eremophil-9-en-11-ol Derivatives Isolated from <i>Botrytis cinerea</i> . ACS Chemical Biology, 2020, 15, 2775-2782.	3.4	4
8	The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 2019, 18, 215-239.	6.5	29
9	Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in <i>Botrytis cinerea</i> . Environmental Microbiology, 2018, 20, 2469-2482.	3.8	37
10	Rapid and not culture-dependent assay based on multiplex PCR-SSR analysis for monitoring inoculated yeast strains in industrial wine fermentations. Archives of Microbiology, 2017, 199, 135-143.	2.2	8
11	The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea. Fungal Biology, 2016, 120, 1225-1235.	2.5	17
12	Chemically Induced Cryptic Sesquiterpenoids and Expression of Sesquiterpene Cyclases in <i>Botrytis cinerea</i> Revealed New Sporogenic (+)-4- <i>Epi</i> eremophil-9-en-11-ols. ACS Chemical Biology, 2016, 11, 1391-1400.	3.4	20
13	Proteomic profiling of Botrytis cinerea conidial germination. Archives of Microbiology, 2015, 197, 117-133.	2.2	27
14	Development of Proteomics-Based Fungicides: New Strategies for Environmentally Friendly Control of Fungal Plant Diseases. International Journal of Molecular Sciences, 2011, 12, 795-816.	4.1	66
15	New Proteomic Approaches to Plant Pathogenic Fungi. Current Proteomics, 2010, 7, 306-315.	0.3	15
16	Phylogenetic relationships and genome organisation of Colletotrichum acutatum causing anthracnose in strawberry. European Journal of Plant Pathology, 2009, 125, 397-411.	1.7	27
17	Development of protocols for detection of <i>Colletotrichum acutatum</i> and monitoring of strawberry anthracnose using realâ€time PCR. Plant Pathology, 2009, 58, 43-51.	2.4	63
18	Isolation and pathogenicity of Colletotrichum spp. causing anthracnose of strawberry in south west Spain. European Journal of Plant Pathology, 2008, 120, 409-415.	1.7	32

CARLOS GARRIDO

#	Article	IF	CITATIONS
19	Proteomic Advances in Phytopathogenic Fungi. Current Proteomics, 2007, 4, 79-88.	0.3	28
20	Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Archives of Microbiology, 2007, 187, 207-215.	2.2	70
21	Occurrence of two different types of RNA-5-containing beet necrotic yellow vein virus in the UK. Archives of Virology, 2007, 152, 59-73.	2.1	40
22	Endophytic Microorganisms as an Alternative for the Biocontrol of <i>Phytophthora</i> spp , 0, , .		2