
Jose-Ramon Cano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1988446/publications.pdf Version: 2024-02-01

IOSE-RAMON CANO

#	Article	IF	CITATIONS
1	Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 417-435.	9.7	611
2	Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation, 2003, 7, 561-575.	7.5	275
3	A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 2008, 41, 2693-2709.	5.1	162
4	Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Information Sciences, 2008, 178, 4421-4433.	4.0	140
5	Stratification for scaling up evolutionary prototype selection. Pattern Recognition Letters, 2005, 26, 953-963.	2.6	105
6	Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data and Knowledge Engineering, 2007, 60, 90-108.	2.1	87
7	On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining. Applied Soft Computing Journal, 2006, 6, 323-332.	4.1	76
8	Analysis of data complexity measures for classification. Expert Systems With Applications, 2013, 40, 4820-4831.	4.4	50
9	Monotonic classification: An overview on algorithms, performance measures and data sets. Neurocomputing, 2019, 341, 168-182.	3.5	50
10	Linguistic modeling with hierarchical systems of weighted linguistic rules. International Journal of Approximate Reasoning, 2003, 32, 187-215.	1.9	27
11	Subgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classes. Pattern Recognition Letters, 2008, 29, 2156-2164.	2.6	27
12	CommuniMents. International Journal on Semantic Web and Information Systems, 2017, 13, 87-108.	2.2	23
13	DIAGNOSE EFFECTIVE EVOLUTIONARY PROTOTYPE SELECTION USING AN OVERLAPPING MEASURE. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23, 1527-1548.	0.7	22
14	Prototype selection to improve monotonic nearest neighbor. Engineering Applications of Artificial Intelligence, 2017, 60, 128-135.	4.3	22
15	Making CN2-SD subgroup discovery algorithm scalable to large size data sets using instance selection. Expert Systems With Applications, 2008, 35, 1949-1965.	4.4	18
16	Hyperrectangles Selection for Monotonic Classification by Using Evolutionary Algorithms. International Journal of Computational Intelligence Systems, 2016, 9, 184.	1.6	16
17	MoNGEL: monotonic nested generalized exemplar learning. Pattern Analysis and Applications, 2017, 20, 441-452.	3.1	9
18	DILS: Constrained clustering through dual iterative local search. Computers and Operations Research, 2020, 121, 104979.	2.4	9

Jose-Ramon Cano

#	Article	IF	CITATIONS
19	Training set selection for monotonic ordinal classification. Data and Knowledge Engineering, 2017, 112, 94-105.	2.1	8
20	Label noise filtering techniques to improve monotonic classification. Neurocomputing, 2019, 353, 83-95.	3.5	8
21	ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning. Applied Sciences (Switzerland), 2020, 10, 3089.	1.3	8
22	Synthetic Sample Generation for Label Distribution Learning. Information Sciences, 2021, 544, 197-213.	4.0	7
23	Decomposition-Fusion for Label Distribution Learning. Information Fusion, 2021, 66, 64-75.	11.7	6
24	Instance Selection Using Evolutionary Algorithms: An Experimental Study. , 2005, , 127-152.		6
25	Enhancing instance-level constrained clustering through differential evolution. Applied Soft Computing Journal, 2021, 108, 107435.	4.1	5
26	ME-MEOA/D <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si2.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mi>C</mml:mi>C</mml:mrow></mml:mrow </mml:msub></mml:math> : Multiobjective constrained clustering through decomposition-based memetic elitism. Swarm and Evolutionary Computation, 2021, 66, 100939.	4.5	5
27	Replacement Strategies to Maintain Useful Diversity in Steady-State Genetic Algorithms. , 2005, , 85-96.		5
28	A Study on the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining. , 2005, , 271-284.		5
29	Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining. , 2005, , 21-39.		4
30	Predictive–collaborative model as recovery and validation tool. Case of study: Psychiatric emergency department decision support. Expert Systems With Applications, 2012, 39, 4044-4048.	4.4	1
31	Improving constrained clustering via decomposition-based multiobjective optimization with memetic elitism. , 2020, , .		1
32	A Review on Evolutionary Prototype Selection. , 2010, , 92-113.		1
33	A First Attempt on Monotonic Training Set Selection. Lecture Notes in Computer Science, 2018, , 277-288.	1.0	1
34	A Nearest Hyperrectangle Monotonic Learning Method. Lecture Notes in Computer Science, 2016, , 311-322.	1.0	0
35	Credal C4.5 with Refinement ofÂParameters. Communications in Computer and Information Science, 2018, , 739-747.	0.4	0
36	Incorporating Knowledge in Evolutionary Prototype Selection. Lecture Notes in Computer Science, 2006, , 1358-1366.	1.0	0

JOSE-RAMON CANO

#	Article	IF	CITATIONS
37	Agglomerative Constrained Clustering Through Similarity and Distance Recalculation. Lecture Notes in Computer Science, 2020, , 424-436.	1.0	Ο
38	Similarity-based and Iterative Label Noise Filters for Monotonic Classification. , 2020, , .		0
39	3SHACC: Three stages hybrid agglomerative constrained clustering. Neurocomputing, 2022, 490, 441-461.	3.5	0