
Jin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/198828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable self-healing hydrogel with siRNA delivery property for sustained STING silencing and enhanced therapy of intervertebral disc degeneration. Bioactive Materials, 2022, 9, 29-43.	8.6	19
2	3D-bioprinted vascular scaffold with tunable mechanical properties for simulating and promoting neo-vascularization. Smart Materials in Medicine, 2022, 3, 199-208.	3.7	19
3	Stimuliâ€Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Advanced Science, 2022, 9, e2103444.	5.6	102
4	Mussel―and Barnacle Cement Proteinsâ€Inspired Dualâ€Bionic Bioadhesive with Repeatable Wetâ€Tissue Adhesion, Multimodal Selfâ€Healing, and Antibacterial Capability for Nonpressing Hemostasis and Promoted Wound Healing. Advanced Functional Materials, 2022, 32, .	7.8	93
5	Microporeâ€Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications. Small, 2022, 18, .	5.2	31
6	Conductive Composite Fiber with Optimized Alignment Guides Neural Regeneration under Electrical Stimulation. Advanced Healthcare Materials, 2021, 10, e2000604.	3.9	77
7	Functionalization strategies of electrospun nanofibrous scaffolds for nerve tissue engineering. Smart Materials in Medicine, 2021, 2, 260-279.	3.7	21
8	Tissue-adhesive and highly mechanical double-network hydrogel for cryopreservation and sustained release of anti-cancer drugs. Smart Materials in Medicine, 2021, 2, 229-236.	3.7	13
9	An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. Journal of Controlled Release, 2021, 335, 359-368.	4.8	42
10	A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioactive Materials, 2021, 6, 2829-2840.	8.6	152
11	Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials, 2020, 230, 119617.	5.7	162
12	A novel mitochondria-targeted phosphorescence probe for hypochlorite ions detection in living cells. Talanta, 2020, 209, 120516.	2.9	11
13	A facile preparation method for anti-freezing, tough, transparent, conductive and thermoplastic poly(vinyl alcohol)/sodium alginate/glycerol organohydrogel electrolyte. International Journal of Biological Macromolecules, 2020, 164, 2512-2523.	3.6	36
14	Multifunctional Poly(vinyl alcohol) Nanocomposite Organohydrogel for Flexible Strain and Temperature Sensor. ACS Applied Materials & Interfaces, 2020, 12, 40815-40827.	4.0	141
15	A sensitive "Switch-on―phosphorescent probe for ferrous iron quantification in drug and In vitro imaging of living cells. Talanta, 2020, 217, 121097.	2.9	3
16	Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Materials Horizons, 2020, 7, 2085-2096.	6.4	187
17	Functionalizing Double-Network Hydrogels for Applications in Remote Actuation and in Low-Temperature Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 30247-30258.	4.0	93
18	Applications of Nanotechnology for Regenerative Medicine; Healing Tissues at the Nanoscale. , 2019, , 485-504.		20

Jin Zhang

#	Article	IF	CITATIONS
19	Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials, 2019, 29, 1903279.	7.8	176

20 Tissue Engineering: Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering (Adv. Funct.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

21	Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules, 2019, 24, 834.	1.7	212
22	Amphiphilic Gemini Iridium(III) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 15276-15289.	4.0	66
23	Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1-34.	11.8	472
24	Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Materials Science and Engineering C, 2018, 88, 79-87.	3.8	40
25	Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, 6, 1604-1615.	2.6	59
26	Tumor microenvironment-labile polymer–doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomaterialia, 2018, 77, 63-73.	4.1	68
27	Porous Electrospun Fibers with Self‣ealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. Small, 2017, 13, 1701949.	5.2	33
28	PEGylated stereocomplex polylactide coating of stent for upregulated biocompatibility and drug storage. Materials Science and Engineering C, 2017, 81, 443-451.	3.8	13
29	Biomedicine: Porous Electrospun Fibers with Self‣ealing Functionality: An Enabling Strategy for Trapping Biomacromolecules (Small 47/2017). Small, 2017, 13, 1770249.	5.2	7
30	Development of nanomaterials for bone-targeted drug delivery. Drug Discovery Today, 2017, 22, 1336-1350.	3.2	103
31	Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach. Polymers, 2016, 8, 213.	2.0	49
32	Development of theRhodiola rosea FuquandRhodiola roseasoy sauce, and the determination of their functional properties. Journal of the Institute of Brewing, 2016, 122, 355-362.	0.8	2
33	Tailor-made poly(<scp>l</scp> -lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching. RSC Advances, 2016, 6, 47418-47426.	1.7	28
34	High-Pressure Compression-Molded Porous Resorbable Polymer/Hydroxyapatite Composite Scaffold for Cranial Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 1471-1482.	2.6	60
35	Annealing regulates the performance of an electrospun poly(ε-caprolactone) membrane to accommodate tissue engineering. RSC Advances, 2015, 5, 32604-32608.	1.7	25
36	Effects of extrusion draw ratio on the morphology, structure and mechanical properties of poly(<scp>l</scp> -lactic acid) fabricated using solid state ram extrusion. RSC Advances, 2015, 5, 69016-69023.	1.7	9

JIN ZHANG

#	Article	IF	CITATIONS
37	Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. Journal of Materials Science, 2014, 49, 1648-1658.	1.7	31
38	Molecular weight-modulated electrospun poly(Îμ-caprolactone) membranes for postoperative adhesion prevention. RSC Advances, 2014, 4, 41696-41704.	1.7	33
39	Study on the photophysical and electrochemical property and molecular simulation of broadly absorbing and emitting perylene diimide derivatives with large D–Ĩ€â€"A structure. RSC Advances, 2014, 4, 43538-43548.	1.7	6
40	High-pressure crystallization of poly(lactic acid) with and without N2 atmosphere protection. Journal of Materials Science, 2013, 48, 7374-7383.	1.7	5
41	Ultraporous poly(lactic acid) scaffolds with improved mechanical performance using highâ€pressure molding and salt leaching. Journal of Applied Polymer Science, 2013, 130, 3509-3520.	1.3	9
42	Highly crystallized poly (lactic acid) under high pressure. AIP Advances, 2012, 2, .	0.6	38
43	Study on a novel polyimide precursor prepared by a modified polymerization of monomeric reactants (MPMR) procedure. Macromolecular Chemistry and Physics, 2000, 201, 505-509.	1.1	2
44	Miscibility and crystallization behavior of thermosetting polyimide/thermoplastic polyimide blends. Macromolecular Chemistry and Physics, 1996, 197, 543-551.	1.1	5
45	Comparative study on polyimides from 3,3?-and 4,4?-linked diphthalic anhydride. Journal of Applied Polymer Science, 1996, 59, 923-930.	1.3	35
46	Miscibility, crystallization, and morphology studies of thermosetting polyimide PMR-15/PEK-C blends. Journal of Applied Polymer Science, 1996, 60, 725-730.	1.3	8
47	The thermal stability of composite based on thermoplastic polyimide containing diphenyl ether unit (POI). Journal of Materials Science Letters, 1996, 15, 916-917.	0.5	1
48	The effect of formulated molecular weight on temperature resistance and mechanical properties in polyimide based composites. Journal of Materials Science, 1996, 31, 5119-5125.	1.7	3