Youlin Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1988002/publications.pdf

Version: 2024-02-01

		1163117	1281871
18	122	8	11
papers	citations	h-index	g-index
18	18	18	22
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Analysis of factors affecting the broadband extinction performance of bioaerosol. Optik, 2020, 201, 163527.	2.9	3
2	Conformation and dynamics of discrete poly(ethylene glycol) chains in nano-scale-thickness solution next to a gold substrate. Sensors and Actuators B: Chemical, 2020, 305, 127419.	7.8	0
3	A comparison of infrared extinction performances of bioaerosols and traditional smoke materials. Optik, 2019, 181, 293-300.	2.9	14
4	Significant broadband extinction abilities of bioaerosols. Science China Materials, 2019, 62, 1033-1045.	6.3	18
5	Analysis of optical properties of bio-smoke materials in the 0.25–14 μm band. Chinese Physics B, 2019, 28, 034201.	1.4	8
6	Aggregation-driven reductions in the mass extinction coefficient of bioaerosols. Optik, 2019, 184, 115-120.	2.9	11
7	Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material. Optik, 2019, 176, 535-541.	2.9	6
8	Effects of relative humidity on the broadband extinction performance of bioaerosol. Optics Express, 2019, 27, 23801.	3.4	7
9	Comparison of two agglomerated particle simulation models for extinction performance calculation of bioaerosol., 2019,,.		1
10	Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in $3\hat{a}\in "5$ micrometers. Optics Express, 2018, 26, 15842.	3.4	15
11	Determination of infrared complex refractive index of microbial materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 305-314.	2.3	10
12	The effect of water content of microbial material on the extinction performance of infrared band. , $2018, , .$		0
13	Infrared Extinction Performance of Randomly Oriented Microbial-Clustered Agglomerate Materials. Applied Spectroscopy, 2017, 71, 2555-2562.	2.2	13
14	Influences of artificial biological particles structures on far-infrared extinction performance. , 2017,		O
15	Electromagnetic Attenuation Characteristics of Microbial Materials in the Infrared Band. Applied Spectroscopy, 2016, 70, 1456-1463.	2.2	12
16	The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm. Proceedings of SPIE, 2015, , .	0.8	2
17	Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band. Proceedings of SPIE, 2015, , .	0.8	1
18	The Study of Moving Target Detection Algorithm Based on Wind Field Detected by Lidar. , 2010, , .		1